Volume 30 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
WANG Bo, DING Peng, FENG Ruize, et al., “Ultra-thin Body Buried In0.35Ga0.65As Channel MOSFETs with Extremely Low Off-current on Si Substrates,” Chinese Journal of Electronics, vol. 30, no. 6, pp. 1017-1021, 2021, doi: 10.1049/cje.2021.07.024
Citation: WANG Bo, DING Peng, FENG Ruize, et al., “Ultra-thin Body Buried In0.35Ga0.65As Channel MOSFETs with Extremely Low Off-current on Si Substrates,” Chinese Journal of Electronics, vol. 30, no. 6, pp. 1017-1021, 2021, doi: 10.1049/cje.2021.07.024

Ultra-thin Body Buried In0.35Ga0.65As Channel MOSFETs with Extremely Low Off-current on Si Substrates

doi: 10.1049/cje.2021.07.024
Funds:

This work is supported by the National Natural Science Foundation of China (No.61874036, No.61805053), the Open Project of State Key Laboratory of ASIC and System (No.KVH1233021), the Guangxi Innovation Research Team Project (No.2018GXNSFGA281004, No.2018GXNSFBA281152), the Guangxi Innovation Driven Development Special Fund Project (No.AA19254015), and the Guangxi Key Laboratory of Precision Navigation Technology and Application Project (No.DH202020, No.DH202001).

  • Received Date: 2020-10-28
  • Rev Recd Date: 2021-01-11
  • Available Online: 2021-09-23
  • Publish Date: 2021-11-05
  • In this paper, we investigated the electrical properties of the Metal-oxide-semiconductor gate stack of Ti/Al2O3/InP under different annealing conditions. A minimum interface trap density of 3×1011cm-2eV-1 is obtained without postmetallization annealing treatment. Additionally, utilizing Ti/Al2O3/InP MOS gate stack, we fabricated ultra-thin body buried In0.35Ga0.65As channel MOSFETs on Si substrates with optimized on/off trade-off. The 200nm gate length device with extremely low off-current of 0.6nA/µm, and on-off ratio of 3.3×105, is demonstrated by employing buried low indium (In0.35Ga0.65As) channel with InP barrier/spacer device structure, giving strong potential for future highperformance and low-power applications.
  • loading
  • Y.Q. Wu, W.K. Wang, O. Koybasi, et al., "0.8-V supply voltage deep-submicrometer inversion-mode In0.75Ga0.25As MOSFET", IEEE Electron Device Lett, Vol.30, No.7, pp.700-702, 2009.
    M. Egard, L. Ohlsson, B.M. Borg, et al., "High transconductance self-aligned gate-last surface channel In0.53Ga0.47As MOSFET", International Electron Devices Meeting (IEDM), Washington, DC, USA, pp.303-306, 2011.
    C.Y. Chang, C. Yokoyama, M. Takenaka, et al., "Impact of La2O3/InGaAs MOS interfaces on the performance of InGaAs MOSFETs", IEEE Trans. Electron Devices, Vol.64, No.6, pp.2519-2525, 2017.
    S.K. Wang, B. Sun, M.M. Cao, et al., "Modification of Al2O3/InP interfaces using sulfur and nitrogen passivations", Journal of Applied Physics, Vol.121, pp.184104, 2017.
    S. Son, J.H. Park, J. Baek, et al., "Record effective mobility obtained from In0.53Ga0.47As/In0.52Ga0.48As quantum-well MOSFETs on 300-mm Si substrate", IEEE Electron Device Lett, Vol.38, No.6, pp.724-727, 2017.
    M.L. Huang, S.W. Chang, M.K. Chen, et al., "In0.53Ga0.47As MOSFETs with high channel mobility and gate stack quality fabricated on 300 mm Si substrate", Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, pp.T204-T205, 2015.
    N. Waldron, C. Merckling, W. Guo, et al., "An InGaAs/InP quantum well FinFet using the replacement Fin process integrated in an RMG flow on 300mm Si substrates", Symposium on VLSI Technology (VLSI-Technology), Honolulu, HI, USA, pp.1-2, 2014.
    L. Czornomaz, E. Uccelli, M. Sousa, et al., "Confined epitaxial lateral overgrowth (CELO):A novel concept for scalable integration of CMOS-compatible InGaAs-oninsulator MOSFETs on large-area Si substrates", Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, pp.T172-173, 2015.
    S.K. Kim, J. Shim, D.M. Geum, et al., "Impact of ground plane doping and bottom-gate biasing on electrical properties in In0.53Ga0.47As-OI MOSFETs and donor wafer reusability toward monolithic 3-D integration with In0.53Ga0.47As channel", IEEE Trans. Electron Devices, Vol.65, No.5, pp.1862-1868, 2018.
    S.K. Kim, J. Shim, D.M. Geum, et al., "Cost-effective fabrication of In0.53Ga0.47As-on-insulator on Si for monolithic 3D via novel epitaxial lift-off (ELO) and donor wafer re-use", IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, pp.616-619, 2016.
    S.K. Kim, J. Shim, D.M. Geum, et al., "Fabrication of InGaAs-on-insulator substrates using direct wafer-bonding and epitaxial lift-off techniques", IEEE Trans. Electron Devices, Vol.64, No.9, pp.3601-3608, 2017.
    J. Lin, L. Czornomaz, N. Daix, et al., "Ultrathin body InGaAs MOSFETs on III-V-on-insulator integrated with Silicon active substrate (III-V-OIAS)", IEEE Trans. Electron Devices, Vol.63, No.8, pp.3088-3095, 2016.
    S.H. Kim, D.M. Geum, M.S. Park, et al., "In0.53Ga0.47 Ason-insulator metal-oxide-semiconductor field-effect transistors utilizing Y2O3 buried oxide", IEEE Electron Device Lett, Vol.36, No.5, pp.451-453, 2015.
    J.Q. Lin, L. Czornomaz, N. Daix et al., "Ultra-thin-body selfaligned InGaAs MOSFETs on insulator (III-V-O-I) by a tightpitch process", Device Research Conference, Santa Barbara, CA, USA, pp.217-218, 2014.
    L. Czornomaz, N. Daix, P. Kerber, et al., "Scalability of ultra-thin-body and BOX InGaAs MOSFETs on silicon", Proceedings of the European Solid-State Device Research Conference (ESSDERC), Bucharest, Romania, pp.143-146, 2013.
    C.B. Zota, C. Convertino, M. Sousa, et al., "Highfrequency quantum well InGaAs-on-Si MOSFETs with scaled gate lengths", IEEE Electron Device Lett, Vol.40, No.4, pp.538-541, 2019.
    R. Castagne and A. Vapaille, "Apparent interface state density introduced by the spatial fluctuations of surface potential in an m.o.s. structure", Electron. Lett., Vol.6, No.22, pp.691-694, 1970.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (470) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return