QIN Mimi, YANG Kuo, LUO Wenguang, LUO Yong, HUANG Yong. Numerical Study of Interaction Efficiency for a 170GHz Megawatt-Level Coaxial-Gyrotron[J]. Chinese Journal of Electronics, 2016, 25(5): 980-985. doi: 10.1049/cje.2016.08.010
Citation: QIN Mimi, YANG Kuo, LUO Wenguang, LUO Yong, HUANG Yong. Numerical Study of Interaction Efficiency for a 170GHz Megawatt-Level Coaxial-Gyrotron[J]. Chinese Journal of Electronics, 2016, 25(5): 980-985. doi: 10.1049/cje.2016.08.010

Numerical Study of Interaction Efficiency for a 170GHz Megawatt-Level Coaxial-Gyrotron

doi: 10.1049/cje.2016.08.010
Funds:  This work was supported in part by the Scientific Research Program of Education Bureau of Sichuan Province (No.13ZB0034).
  • Received Date: 2014-07-22
  • Rev Recd Date: 2015-03-27
  • Publish Date: 2016-09-10
  • The beam-wave interaction efficiency of a 170 GHz megawatt-level corrugated coaxial-gyrotron operating with TE31,12 mode was studied numerically. According to the self-consistent nonlinear theory, the efficiencies of two types of coaxial resonator were calculated and compared. Taking into account electronic velocity spread and cavity wall resistivity, the beam-wave interactions of improved cavity were investigated. The relationships between efficiency and magnetic field, voltage, current, beam radius, velocity ratio, and parameters of groove are presented. The results show that the voltage and magnetic field have great influence on efficiency, but the current and velocity spread do slightly. The optimized geometry parameters can improve efficiency, reduce the impact of velocity spread on efficiency, and achieve around 48.6% electronic efficiency and 1.7MW output power at 5% velocity spread and 6.896×10-8Ωm resistivity.
  • loading
  • Keishi Sakamoto, Atsushi Kasugai, Ken Kajiwara, et al., "Progress of high power 170GHz gyrotron in JAEA", Nucl. Fusion, Vol.49, pp.095019-1-095019-6, 2009.
    G.G. Denisov, A.G. Litvak, V.E. Myasnikov, et al., "Development in Russia of high-power gyrotrons for fusion", Nucl. Fusion, Vol.48, pp.054007-1-054007-5, 2008.
    K. Felch, M. blank, P. Borchard, et al., "Recent ITER-relevant gyrotron tests", Journal of Physics:Conference Series, Vol.25, pp.13-23, 2005.
    Olgierd Dumbrajs and Gregory S. Nusinovich, "Coaxial gyrotrons:Past, present, and future (Review)", Transaction on Plasma Science, Vol.32, No.3, pp.934-946, 2004.
    B. Piosczyk, G. Dammertz, O. Dumbrajs, et al., "A 2-MW, 170-GHz coaxial cavity gyrotron", IEEE Transactions on Plasma Science, Vol.32, No.3, pp.413-417, 2004.
    Christos T. Iatrou, Stefan Kern and Alexander B. Pavelyev, "Coaxial cavities with corrugated inner conductor for gyrotrons", IEEE Transactions on Microwave Theory and Techniques, Vol.44, No.1, pp.56-64, 1996.
    Bernhard Piosczyk, Gunter Dammertz, Olgierd Dumbrajs, et al., "165-GHz, Coaxial cavity gyrotron", IEEE Transactions on Plasma Science, Vol.32, No.3, pp.853-860, 2004.
    M.V. Kartikeyan, E. Borie and M.K.A. Thumm, "Calculation of RF behaviour", Gyrotrons:High-power Microwave and Millimeter Wave Technology, New York:Spring-verlag Berlin Heidelberg, pp.45-82, 2004.
    Rui Liu and Hongfu Li, "Study of eigenmodes of coaxial resonators using coupled-wave theory," J. Infrared Milli. TerahzWaves, Vol.31, No.7, pp.995-1003, 2010.
    A.W. Fliflet, M.E. Read, K.R. Chu, et al., "A self-consistent field theory for gyrotron oscillators:Application to a low Q gyromonotron", Int. J. Electronics, Vol.53, No.6, pp.505-521, 1982.
    Qin Mimi, Luo Yong, Yang Shichao, et al., "Simulation research on propagation characteristics of 170GHz open cavity with weakly tapered cross-section", High Power Laser and Particle Beams, Vol.25, No.2, pp.427-430, 2013. (in Chinese)
    K.R. Chu and Anthony T. Lin, "Gain and bandwidth of the Gyro-TWT and CARM amplifier", IEEE Transactions on Plasma Science, Vol.16, No.2, pp.90-104, 1988.
    Kwo Ray CHU, Han-Ying Chen, Chien-Lung Hung, et al., "Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier", IEEE Transactions on Plasma Science, Vol.27, No.2, pp.391-404, 1999.
    Ruifeng Pu, Gregory S. Nusinovich, Oleksandr V. Sinitsyn, et al., "Numerical study of efficiency for a 670GHz gyrotron", Physics of Plasmas, Vol.18, pp.023107-1-023107-5, 2011.
    Chaojun Lei, Sheng Yu, Hongfu Li, et al., "Numerical study on a 0.6-THz second harmonic gyrotron with gradually tapered cavity", IEEE Transactions on Plasma Science, Vol.42, No.2, pp.293-299, 2014.
    R. Advani, J.P. Hogge, Kenneth E. Kreischer, et al., "Experimantal investigation of a 140-GHz coaxial gyotron oscillator", IEEE Transactions on Plasma Science, Vol.29, No.6, pp.943-950, 2001
    Nitin Kumar, Udaybir, T.P. Singh, et al., "Design of 95GHz, 2MW gyrotron for communication and security applications", J. Infrared Milli. Terahz Waves, Vol.32, pp.186-195, 2011.
    Qin Mimi, Luo Yong, Yang Kuo, et al., "Analysis and calculation of a 170Ghz megawatt-level coaxial gyrotron", Acta Physica Sinica, Vol.63, No.5, pp.050203-050203-9, 2014. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (180) PDF downloads(687) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return