DU Yi, Abish Malik, ZHOU Lianke, ZHOU Yuanchun. A Correlation Visual Analytics System for Air Quality[J]. Chinese Journal of Electronics, 2018, 27(5): 920-926. doi: 10.1049/cje.2018.04.013
Citation: DU Yi, Abish Malik, ZHOU Lianke, ZHOU Yuanchun. A Correlation Visual Analytics System for Air Quality[J]. Chinese Journal of Electronics, 2018, 27(5): 920-926. doi: 10.1049/cje.2018.04.013

A Correlation Visual Analytics System for Air Quality

doi: 10.1049/cje.2018.04.013
Funds:  This research was supported by the National Key Research and Development Program of China (No.2017YFC1601504), the National Natural Science Foundation of China under Grant (No.61402435) and China Scholarship Council.
More Information
  • Corresponding author: ZHOU Yuanchun (corresponding author) was born in 1975. He received his Ph.D. from the Institute of Computing Technology, Chinese Academy of Sciences, in 2006. He is a professor at the Department of Big Data Technology and Application Development at the Computer Network Information Center, Chinese Academy of Sciences. His research interests include data mining and data intensive computing. (Email:zyc@cnic.cn)
  • Received Date: 2017-03-10
  • Rev Recd Date: 2018-01-02
  • Publish Date: 2018-09-10
  • A visual analytics system is proposed to reveal the lead/lag correlation when air pollution is detected. In this system, an Overview + Detail approach is utilized for analyzing the correlation of air quality under both the spatial and temporal dimensions and different spatial-temporal scales. An annular container is proposed to preserve the context spatial information while the zoom level of the map changes. Based on the annular container, several analysis techniques such as STL decomposition view and correlation algorithm are integrated.
  • loading
  • P. Accorsi, N. Lalande, M. Fabregue, et al., “Hydroqual: Visual analysis of river water quality”, Proc. of IEEE Conf. Vis. Anal. Sci. Tech. (VAST), Paris, France, pp.123-132, 2014.
    P. Lundblad, H. Lofving, A. Elovsson, et al., “Exploratory visualization for weather data verification”, Proc. of IEEE 15th Int. Conf. Inform. Vis., London, UK, pp.306-313, 2011.
    S. Thakur and A.J. Hanson, “A 3d visualization of multiple time series on maps”, Proc. of IEEE 14th Int. Conf. Inform. Vis., London, UK, pp.336-343, 2010.
    R. Beecham, J. Dykes, W. Meulemans, et al., “Map lineups: Effects of spatial structure on graphical inference”, IEEE Transactions on Visualization and Computer Graphics, Vol.23, No.1, pp.391-400, 2017.
    H. Qu, W.-Y. Chan, A. Xu, et al., “Visual analysis of the air pollution problem in hong kong”, IEEE Trans. Vis. Comput. Graphics, Vol.13, No.6, pp.1408-1415, 2007.
    M.C. Gonzalez, C.A. Hidalgo, and A.-L. Barabasi, “Understanding individual human mobility patterns”, Nature, Vol.453, No.7196, pp.779-782, 2008.
    C. Song, Z. Qu, N. Blumm, et al., “Limits of predictability in human mobility”, Science, Vol.327, No.5968, pp.1018-1021, 2010.
    Z. Wang, T. Ye, M. Lu, et al., “Visual exploration of sparse traffic trajectory data”, IEEE Trans. Vis. Comput. Graphics, Vol.20, No.12, pp.1813-1822, 2014.
    G. Andrienko, N. Andrienko, M. Mladenov, et al., “Identifying place histories from activity traces with an eye to parameter impact”, IEEE Trans. Vis. Comput. Graphics, Vol.18, No.5, pp.675-688, 2012.
    M. De Nadai, J. Staiano, R. Larcher, et al., “The death and life of great italian cities: A mobile phone data perspective”, Proc. of 25th Int. Conf. World Wide Web, Montreal, Canada, pp.413-423, 2016.
    J. Pu, S. Liu, P. Xu, et al., “Mviewer: mobile phone spatiotemporal data viewer”, Front. Comput. Sci., Vol.8, No.2, pp.298-315, 2014.
    J. Doyle, P. Hung, R. Farrell, et al., “Population mobility dynamics estimated from mobile telephony data”, J. Urban Tech., Vol.21, No.2, pp.109-132, 2014.
    J. Zhang, D.L. Mauzerall, T. Zhu, et al., “Environmental health in china: progress towards clean air and safe water”, The Lancet, Vol.375, No.9720, pp.1110-1119, 2010.
    Y. Du, C.X. Ma, C. Wu, et al., “A visual analytics approach for station-based air quality data”, Sensors, Vol.17, No.1, pp.1-17, 2017.
    J. Li, K. Zhang, and Z.-P. Meng, “Vismate: Interactive visual analysis of station-based observation data on climate changes”, Proc. of IEEE Conf. Vis. Anal. Sci. Tech. (VAST), Paris, France, pp.133-142, 2014.
    Z. Zhang, K.T. Mcdonnell, E. Zadok, et al., “Visual correlation analysis of numerical and categorical data on the correlation map”, IEEE Transactions on Visualization & Computer Graphics, Vol.21, No.2, pp.289-303, 2015.
    P. Kothur, C. Witt, M. Sips, et al., “Visual analytics for correlation-based comparison of time series ensembles”, Comput. Graph. Forum, Vol.34, No.3, pp.411-420, 2015.
    W.W. Zhang, F.L. Yin and Y.F. Jia, “The accuracy analysis of zero-lag correlation coefficient of dual-polarization radar”, Chinese Journal of Electronics, Vol.24, No.1, pp.212-217, 2015.
    J. Sukharev, C. Wang, K.L. Ma, et al., “Correlation study of time-varying multivariate climate data sets”, Proc. of IEEE Pacific Vis. Symp., Beijing, China, pp.161-168, 2009.
    C.K. Chen, C. Wang, K.L. Ma, et al., “Static correlation visualization for large time-varying volume data”, Proc. of IEEE Pacific Vis. Symp., Hong Kong, China, pp.27-34, 2011.
    L. Byron and M. Wattenberg, “Stacked graphs geometry & aesthetics”, IEEE Trans. Vis. Comput. Graphics, Vol.14, No.6, pp.1245-1252, 2008.
    R.B. Cleveland, W.S. Cleveland, J.E. McRae, et al., “Stl: A seasonal-trend decomposition procedure based on loess”, J. Off. Stat., Vol.6, No.1, pp.3-73, 1990.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads(215) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return