Volume 32 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
LIU Guangdong, “Microwave Tomographic Imaging of Anatomically Realistic Numerical Phantoms with Debye Dispersion for Breast Cancer Detection Using a Regularized Inverse Scattering Technique in the Time Domain,” Chinese Journal of Electronics, vol. 32, no. 5, pp. 1133-1150, 2023, doi: 10.23919/cje.2021.00.343
Citation: LIU Guangdong, “Microwave Tomographic Imaging of Anatomically Realistic Numerical Phantoms with Debye Dispersion for Breast Cancer Detection Using a Regularized Inverse Scattering Technique in the Time Domain,” Chinese Journal of Electronics, vol. 32, no. 5, pp. 1133-1150, 2023, doi: 10.23919/cje.2021.00.343

Microwave Tomographic Imaging of Anatomically Realistic Numerical Phantoms with Debye Dispersion for Breast Cancer Detection Using a Regularized Inverse Scattering Technique in the Time Domain

doi: 10.23919/cje.2021.00.343
Funds:  This work was supported by the National Natural Science Foundation of China (51271059) and the Natural Science Foundation of Nanjing Polytechnic Institute (NJPI-2022-06).
More Information
  • Author Bio:

    Guangdong LIU (corresponding author) was born in Jiangsu, China, in 1972. He received the Dr. Eng. degree in electromagnetic field and microwave technology, from the College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, in 2011. Currently, he is a Professor of the School of Electrical and Control Engineering, Nanjing Polytechnic Institute, China. His research interests include electromagnetic inverse scattering theory and its applications. (Email: gdliu@njpi.edu.cn)

  • Received Date: 2021-09-16
  • Accepted Date: 2022-09-27
  • Available Online: 2022-11-22
  • Publish Date: 2023-09-05
  • In recent years, three similar versions of time-domain inverse scattering (TDIS) algorithms have been proposed for the successful estimation of the dispersive dielectric properties of several single-pole Debye media. For practical applications in common biomedical engineering, an improved TDIS algorithm is explicitly derived to provide a more versatile algorithm for the microwave tomographic imaging of biological tissues. Its three improvements are as follows. The number of poles for Debye models is extended from one to a positive integer W. The second improvement is the extension of unknowns from three to 2W+2 for each discretized cell. The third improvement is the adoption of the first-order Tikhonov regularization scheme. Based on the four classes of 2-dimensional anatomically realistic numerical phantoms with two-pole Debye dispersion from the University of Wisconsin Computational Electromagnetics Laboratory (UWCEM) database, the performance of the developed algorithm for the detection of a 3-mm-diameter tumor implanted in the four types of breast models was investigated for three scenarios. The obtained results preliminarily indicate that the modified technique is feasible and promising for the quantitative reconstruction of sparse breast tissues.
  • loading
  • [1]
    R. L. Siegel, K. D. Miller, H. E. Fuchs, et al., “Cancer statistics, 2021,” CA:A Cancer Journal for Clinicians, vol.71, no.1, pp.7–33, 2021. doi: 10.3322/caac.21654
    [2]
    M. Jalilvand, X. Y. Li, L. Zwirello, et al., “Ultra wideband compact near-field imaging system for breast cancer detection,” IET Microwaves, Antennas & Propagation, vol.9, no.10, pp.1009–1014, 2015. doi: 10.1049/iet-map.2014.0735
    [3]
    S. Mukherjee, L. Udpa, S. Udpa, et al., “A time reversal-based microwave imaging system for detection of breast tumors,” IEEE Transactions on Microwave Theory and Techniques, vol.67, no.5, pp.2062–2075, 2019. doi: 10.1109/TMTT.2019.2902555
    [4]
    H. Sato and S. Kidera, “ROI limited unknowns reduction-based contrast source inversion for microwave breast imaging,” IEEE Antennas and Wireless Propagation Letters, vol.19, no.12, pp.2285–2289, 2020. doi: 10.1109/LAWP.2020.3030054
    [5]
    X. Li, E. J. Bond, B. D. Van Veen, et al., “An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection,” IEEE Antennas and Propagation Magazine, vol.47, no.1, pp.19–34, 2005. doi: 10.1109/MAP.2005.1436217
    [6]
    A. Zamani, A. M. Abbosh, and A. T. Mobashsher, “Fast frequency-based multistatic microwave imaging algorithm with application to brain injury detection,” IEEE Transactions on Microwave Theory and Techniques, vol.64, no.2, pp.653–662, 2016. doi: 10.1109/TMTT.2015.2513398
    [7]
    X. H. Zhang, X. L. Xi, M. C. Li, et al., “Comparison of impulse radar and spread-spectrum radar in through-wall imaging,” IEEE Transactions on Microwave Theory and Techniques, vol.64, no.3, pp.699–706, 2016. doi: 10.1109/TMTT.2015.2508791
    [8]
    V. Gracheva and J. Ender, “Multichannel analysis and suppression of sea clutter for airborne microwave radar systems,” IEEE Transactions on Geoscience and Remote Sensing, vol.54, no.4, pp.2385–2399, 2016. doi: 10.1109/TGRS.2015.2500918
    [9]
    D. O’Loughlin, B. L. Oliveira, A. Santorelli, et al., “Sensitivity and specificity estimation using patient-specific microwave imaging in diverse experimental breast phantoms,” IEEE Transactions on Medical Imaging, vol.38, no.1, pp.303–311, 2019. doi: 10.1109/TMI.2018.2864150
    [10]
    H. Song, S. Sasada, N. Masumoto, et al., “A two-stage rotational surface clutter suppression method for microwave breast imaging with multistatic impulse-radar detector,” IEEE Transactions on Instrumentation and Measurement, vol.69, no.12, pp.9586–9598, 2020. doi: 10.1109/TIM.2020.3004683
    [11]
    J. E. Johnson, T. Takenaka, and T. Tanaka, “Two-dimensional time-domain inverse scattering for quantitative analysis of breast composition,” IEEE Transactions on Biomedical Engineering, vol.55, no.8, pp.1941–1945, 2008. doi: 10.1109/TBME.2007.899364
    [12]
    T. F. Yin, F. H. Ali, and C. C. Reyes-Aldasoro, “A robust and artifact resistant algorithm of ultrawideband imaging system for breast cancer detection,” IEEE Transactions on Biomedical Engineering, vol.62, no.6, pp.1514–1525, 2015. doi: 10.1109/TBME.2015.2393256
    [13]
    G. Ruvio, R. Solimene, A. Cuccaro, et al., “Comparison of noncoherent linear breast cancer detection algorithms applied to a 2-D numerical model,” IEEE Antennas and Wireless Propagation Letters, vol.12, pp.853–856, 2013. doi: 10.1109/LAWP.2013.2271560
    [14]
    A. Cuccaro, A. Dell’Aversano, G. Ruvio, et al., “Incoherent radar imaging for breast cancer detection and experimental validation against 3D multimodal breast phantoms,” Journal of Imaging, vol.7, no.2, article no.23, 2021. doi: 10.3390/JIMAGING7020023
    [15]
    S. C. Hagness, A. Taflove, and J. E. Bridges, “Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed-focus and antenna-array sensors,” IEEE Transactions on Biomedical Engineering, vol.45, no.12, pp.1470–1479, 1998. doi: 10.1109/10.730440
    [16]
    D. Oloumi, R. S. C. Winter, A. Kordzadeh, et al., “Microwave imaging of breast tumor using time-domain UWB circular-SAR technique,” IEEE Transactions on Medical Imaging, vol.39, no.4, pp.934–943, 2020. doi: 10.1109/TMI.2019.2937762
    [17]
    P. Mojabi and J. LoVetri, “A novel microwave tomography system using a rotatable conductive enclosure,” IEEE Transactions on Antennas and Propagation, vol.59, no.5, pp.1597–1605, 2011. doi: 10.1109/TAP.2011.2123066
    [18]
    A. Fhager, M. Gustafsson, and S. Nordebo, “Image reconstruction in microwave tomography using a dielectric Debye model,” IEEE Transactions on Biomedical Engineering, vol.59, no.1, pp.156–166, 2012. doi: 10.1109/TBME.2011.2168606
    [19]
    W. C. Chew and J. H. Lin, “A frequency-hopping approach for microwave imaging of large inhomogeneous bodies,” IEEE Microwave and Guided Wave Letters, vol.5, no.12, pp.439–441, 1995. doi: 10.1109/75.481854
    [20]
    T. Takenaka, H. Jia, and T. Tanaka, “Microwave imaging of electrical property distributions by a forward-backward time-stepping method,” Journal of Electromagnetic Waves and Applications, vol.14, no.12, pp.1609–1626, 2000. doi: 10.1163/156939300X00383
    [21]
    R. Solimene, A. Cuccaro, G. Ruvio, et al., “Beamforming and holography image formation methods: an analytic study,” Optics Express, vol.24, no.8, pp.9077–9093, 2016. doi: 10.1364/OE.24.009077
    [22]
    D. W. Winters, E. J. Bond, B. D. Van Veen, et al., “Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique,” IEEE Transactions on Antennas and Propagation, vol.54, no.11, pp.3517–3528, 2006. doi: 10.1109/TAP.2006.884296
    [23]
    T. G. Papadopoulos and I. T. Rekanos, “Time-domain microwave imaging of inhomogeneous Debye dispersive scatterers,” IEEE Transactions on Antennas and Propagation, vol.60, no.2, pp.1197–1202, 2012. doi: 10.1109/TAP.2011.2173150
    [24]
    M. Gustafsson and S. L. He, “A wave-splitting based optimization approach to multi-dimensional time-domain electromagnetic inverse problems,” Mathematics and Computers in Simulation, vol.50, no.5-6, pp.541–551, 1999. doi: 10.1016/S0378-4754(99)00103-2
    [25]
    I. T. Rekanos, “Time-domain inverse scattering using Lagrange multipliers: an iterative FDTD-based optimization technique,” Journal of Electromagnetic Waves and Applications, vol.17, no.2, pp.271–289, 2003. doi: 10.1163/156939303322235824
    [26]
    M. A. Ali and M. Moghaddam, “3D nonlinear super-resolution microwave inversion technique using time-domain data,” IEEE Transactions on Antennas and Propagation, vol.58, no.7, pp.2327–2336, 2010. doi: 10.1109/TAP.2010.2048848
    [27]
    M. Lazebnik, M. Okoniewski, J. H. Booske, et al., “Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies,” IEEE Microwave and Wireless Components Letters, vol.17, no.12, pp.822–824, 2007. doi: 10.1109/LMWC.2007.910465
    [28]
    S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Physics in Medicine & Biology, vol.41, no.11, pp.2271–2293, 1996. doi: 10.1088/0031-9155/41/11/003
    [29]
    P. Charbonnier, L. Blanc-Féraud, G. Aubert, et al., “Deterministic edge-preserving regularization in computed imaging,” IEEE Transactions on Image Processing, vol.6, no.2, pp.298–311, 1997. doi: 10.1109/83.551699
    [30]
    R. A. Willoughby, “Solutions of ill-posed problems (A. N. Tikhonov and V. Y. Arsenin),” SIAM Review, vol.21, no.2, pp.266–267, 1979. doi: 10.1137/1021044
    [31]
    UWCEM, “Phantom repository,” Available at: https://uwcem.ece.wisc.edu/phantomRepository.html, 2021.
    [32]
    D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Springer, New York, NY, USA, pp.7–12, 2013, doi: https://doi.org/10.1007/978-1-4614-4942-3.
    [33]
    I. T. Rekanos and A. Raisanen, “Microwave imaging in the time domain of buried multiple scatterers by using an FDTD-based optimization technique,” IEEE Transactions on Magnetics, vol.39, no.3, pp.1381–1384, 2003. doi: 10.1109/TMAG.2003.810526
    [34]
    P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Review, vol.34, no.4, pp.561–580, 1992. doi: 10.1137/1034115
    [35]
    J. Nocedal and S. J. Wright, Numerical Optimization. Springer, New York, NY, USA, pp.497–525, 2006, doi: 10.1007/978-0-387-40065-5.
    [36]
    H. Sagan, Introduction to the Calculus of Variations. McGraw-Hill, New York, NY, USA, pp.10–22, 1969.
    [37]
    Y. H. Dai, “A family of hybrid conjugate gradient methods for unconstrained optimization,” Mathematics of Computation, vol.72, no.243, pp.1317–1329, 2003. doi: 10.1090/S0025-5718-03-01491-1
    [38]
    A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., Artech House, Boston, MA, USA, pp.353–368, 2005.
    [39]
    J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microwave and Optical Technology Letters, vol.27, no.5, pp.334–339, 2000. doi: 10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
    [40]
    C. T. Kelley, Iterative Methods for Optimization. SIAM, Philadelphia, PA, USA, pp.40–49, 1987.
    [41]
    S. K. Davis, H. Tandradinata, S. C. Hagness, et al., “Ultrawideband microwave breast cancer detection: a detection-theoretic approach using the generalized likelihood ratio test,” IEEE Transactions on Biomedical Engineering, vol.52, no.7, pp.1237–1250, 2005. doi: 10.1109/TBME.2005.847528
    [42]
    E. Zastrow, S. K. Davis, M. Lazebnik, et al., “Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast,” IEEE Transactions on Biomedical Engineering, vol.55, no.12, pp.2792–2800, 2008. doi: 10.1109/TBME.2008.2002130
    [43]
    American College of Radiology, Breast Imaging Reporting and Data System Atlas (BI-RADS Atlas). ACR, Reston, VA, USA, 2003.
    [44]
    T. C. Williams, E. C. Fear, and D. T. Westwick, “Tissue sensing adaptive radar for breast cancer detection-investigations of an improved skin-sensing method,” IEEE Transactions on Microwave Theory and Techniques, vol.54, no.4, pp.1308–1314, 2006. doi: 10.1109/TMTT.2006.871224
    [45]
    D. W. Winters, J. D. Shea, E. L. Madsen, et al., “Estimating the breast surface using UWB microwave monostatic backscatter measurements,” IEEE Transactions on Biomedical Engineering, vol.55, no.1, pp.247–256, 2008. doi: 10.1109/TBME.2007.901028
    [46]
    G. D. Liu, “Time-domain electromagnetic inversion technique for biological tissues by reconstructing distributions of Cole-Cole model parameters,” Applied Computational Electromagnetics Society Journal, vol.32, no.1, pp.8–14, 2017.
    [47]
    Q. Q. Fang, P. M. Meaney, and K. D. Paulsen, “Microwave image reconstruction of tissue property dispersion characteristics utilizing multiple-frequency information,” IEEE Transactions on Microwave Theory and Techniques, vol.52, no.8, pp.1866–1875, 2004. doi: 10.1109/TMTT.2004.832014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(3)

    Article Metrics

    Article views (361) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return