Citation:  CHENG Guanghui, MIAO Jifei, LI Wenrui. Two Jacobilike algorithms for the general joint diagonalization problem with applications to blind source separation[J]. Chinese Journal of Electronics. doi: 10.1049/cje.2019.00.102 
[1] 
E. Moreau, “A generalization of joint diagonalization criteria for source separation”, IEEE Trans. Signal Processing, Vol.49, No.3, pp.530–541, 2001. doi: 10.1109/78.905873

[2] 
B. Afsari, “Simple LU and QR based nonorthogonal matrix joint diagonalization”, Independent Component Analysis and Blind Signal Separation, 6th International Conference, Charleston, SC, USA, pp. 1–7, 2006.

[3] 
P. Tichavsky and A. Yeredor, “Fast approximate joint diagonalization incorporating weight matrices”, IEEE Trans. Signal Processing, Vol.57, No.3, pp.878–891, 2009. doi: 10.1109/TSP.2008.2009271

[4] 
G. Chabriel, M. Kleinsteuber, E. Moreau, et al., “Joint matrices decompositions and blind source separation: A survey of methods, identification, and applications”, IEEE Signal Process. Mag., Vol.31, No.3, pp.34–43, 2014. doi: 10.1109/MSP.2014.2298045

[5] 
V. Maurandi and E. Moreau, “A decoupled Jacobilike algorithm for nonunitary joint diagonalization of complexvalued matrices”, IEEE Signal Process. Lett., Vol.21, No.12, pp.1453–1456, 2014. doi: 10.1109/LSP.2014.2339891

[6] 
V. Maurandi, E. Moreau and C. DeLuigi, “Jacobi like algorithm for nonorthogonal joint diagonalization of Hermitian matrices”, ICASSP, Florence, Italy, pp. 6196–6200, 2014.

[7] 
T. Trainini and E. Moreau, “A coordinate descent algorithm for complex joint diagonalization under Hermitian and transpose congruences”, IEEE Trans. Signal Processing, Vol.62, No.19, pp.4974–4983, 2014. doi: 10.1109/TSP.2014.2343948

[8] 
G.H. Cheng, S.M. Li and E. Moreau, “New Jacobilike algorithms for nonorthogonal joint diagonalization of Hermitian matrices”, Signal Processing, Vol.128, pp.440–448, 2016. doi: 10.1016/j.sigpro.2016.05.013

[9] 
D.Z. Feng, X.D. Zhang and Z. Bao, “An efficient multistage decomposition approach for independent components”, Signal Processing, Vol.83, No.1, pp.181–197, 2003. doi: 10.1016/S01651684(02)003900

[10] 
B. Afsari and P. S. Krishnaprasad, “Some gradient based joint diagonalization methods for ICA”, Independent Component Analysis and Blind Signal Separation, Fifth International Conference, Granada, Spain, pp. 437–444, 2004.

[11] 
H.J. Yu and D.S. Huang, “Graphical representation for DNA sequences via joint diagonalization of matrix pencil”, IEEE J. Biomedical and Health Informatics, Vol.17, No.3, pp.503–511, 2013. doi: 10.1109/TITB.2012.2227146

[12] 
J. F Cardoso and A. Souloumiac, “Blind beamforming for nongaussian signals”, IEE ProceedingsF, Vol.140, No.6, pp.362–370, 1993.

[13] 
A. Belouchrani, K. AbedMeraim, J.F. Cardoso and E. Moulines, “A blind source separation technique using secondorder statistics”, IEEE Trans. Signal Processing, Vol.45, No.2, pp.434–444, 1997. doi: 10.1109/78.554307

[14] 
Y.O. Li, T. Adali, W. Wang and V. D. Calhoun, “Joint blind source separation by multiset canonical correlation analysis”, IEEE Trans. Signal Processing, Vol.57, No.10, pp.3918–3929, 2009. doi: 10.1109/TSP.2009.2021636

[15] 
V.D. Calhoun and T. Adali, “Multisubject independent component analysis of fmri: a decade of intrinsic networks, default mode, and neurodiagnostic discovery”, IEEE Reviews in Biomedical Engineering, Vol.5, pp.60–73, 2012. doi: 10.1109/RBME.2012.2211076

[16] 
V.D. Calhoun, T. Adali, G.D. Pearlson and J.J. Pekar, “A method for making group inferences from functional MRI data using independent component analysis”, Human Brain Mapping, Vol.14, No.3, Article No.140, 2001. doi: 10.1002/hbm.1048

[17] 
J. Laney, K. Westlake, S. Ma, E. Woytowicz, and T. Adali, “Capturing subject variability in data driven FMRI analysis: A graph theoretical comparison”, 48th Annual Conference on Information Sciences and Systems, Princeton, NJ, USA, pp. 1–6, 2014.

[18] 
A. M. Michael, M. Anderson, et al., “Preserving subject variability in group FMRI analysis: performance evaluation of GICA vs. IVA”, Frontiers in Systems Neuroscience, Vol.8, No.106, Article No.106, 2014.

[19] 
T. Adali, Y. LevinSchwartz, and V. D. Calhoun, “Multimodal data fusion using source separation: Two effective models based on ICA and IVA and their properties”, Proceedings of the IEEE, Vol.103, No.9, pp.1478–1493, 2015. doi: 10.1109/JPROC.2015.2461624

[20] 
X.L. Li, T. Adali, and M. Anderson, “Joint blind source separation by generalized joint diagonalization of cumulant matrices”, Signal Processing, Vol.91, No.10, pp.2314–2322, 2011. doi: 10.1016/j.sigpro.2011.04.016

[21] 
P. Tichavsky, A. H. Phan, and A. Cichocki, “Nonorthogonal tensor diagonalization”, Signal Processing, Vol.138, pp.313–320, 2017. doi: 10.1016/j.sigpro.2017.04.001

[22] 
F. Roemer and M. Haardt, “A semialgebraic framework for approximate CP decompositions via simultaneous matrix diagonalizations”, Elsevier NorthHolland, Inc., 2013.

[23] 
K. Naskovska, M. Haardt, P. Tichavsky, et al., “Extension of the semialgebraic framework for approximate CP decompositions via nonsymmetric simultaneous matrix diagonalization”, IEEE International Conference on Acoustics, Speech and Signal Processing, pp.2971–2975, 2016.

[24] 
A. Ziehe, P. Laskov, G. Nolte and K.R. Müller, “A fast algorithm for joint diagonalization with nonorthogonal transformations and its application to blind source separation”, Journal of Machine Learning Research, Vol.5, No.3, pp.777–800, 2004.

[25] 
O. Macchi and E. Moreau, “Selfadaptive source separation by direct and recursive networks”, International Conference on Digital Signal Processing, pp.1154–1159, 1154.

[26] 
A. Mesloub, K. AbedMeraim and A. Belouchrani, “A new algorithm for complex nonorthogonal joint diagonalization based on Shear and Givens rotations”, IEEE Trans. Signal Processing, Vol.62, No.8, pp.1913–1925, 2014. doi: 10.1109/TSP.2014.2303947

[27] 
N. Vervliet, O. Debals, L. Sorber, et al., “Tensorlab 3.0”, 2016.

[28] 
M. Anderson, X.L. Li and T. Adali, “Complexvalued independent vector analysis: Application to multivariate Gaussian model”, Signal Processing, Vol.92, No.8, pp.1821–1831, 2012. doi: 10.1016/j.sigpro.2011.09.034

[29] 
L. Zou, X. Chen and Z. J. Wang, “Underdetermined joint blind source separation for two datasets based on tensor decomposition”, IEEE Signal Process. Lett., Vol.23, No.5, pp.673–677, 2016. doi: 10.1109/LSP.2016.2546687

[30] 
J. Benesty, J.D. Chen, Y.T. Huang, and I. Cohen, “Pearson correlation coefficient”, Springer Berlin Heidelberg, 2009.

[31] 
A. L. Goldberger, L. A. N. Amaral, L. Glass, et al., “Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals”, Circulation, Vol.101, No.23, Article No.215, 2000.
