Citation: | ZHANG Li, HAO Shengang, ZHANG Quanxin. A Fine-Grained Flash-Memory Fragment Recognition Approach for Low-Level Data Recovery[J]. Chinese Journal of Electronics. doi: 10.1049/cje.2020.00.206 |
[1] |
W. Wang, X. Wang, D. Feng, et al., “Exploring permission-induced risk in android applications for malicious application detection,” IEEE Transactions on Information Forensics and Security, vol.9, no.11, pp.1869–1882, 2014. doi: 10.1109/TIFS.2014.2353996
|
[2] |
X. Yu, Y. Tan, Z. Sun, et al., “A fault-tolerant and energy-efficient continuous data protection system,” Journal of Ambient Intelligence and Humanized Computing, vol.10, no.8, pp.2945–2954, 2019. doi: 10.1007/s12652-018-0726-2
|
[3] |
W. Meng, W. Li and L. F. Kwok, “EFM: Enhancing the performance of signature-based network intrusion detection systems using enhanced filter mechanism,” Computers & Security, vol.43, pp.189–204, 2014.
|
[4] |
Q. Zhang, Y. Gan, L. Liu, et al., “An authenticated asymmetric group key agreement based on attribute encryption,” Journal of Network and Computer Applications, vol.123, pp.1–10, 2018. doi: 10.1016/j.jnca.2018.08.013
|
[5] |
Z. Guan, X. Liu, L. Wu, et al., “Cross-lingual multi-keyword rank search with semantic extension over encrypted data,” Information Sciences, vol.514, pp.523–540, 2020. doi: 10.1016/j.ins.2019.11.013
|
[6] |
V. Roussev and S. L. Garfinkel, “File fragment classification-the case for specialized approaches,” in Proceedings of Fourth International IEEE Workshop on Systematic Approaches to Digital Forensic Engineering, Berkeley, CA, USA, pp.3–14, 2009.[LinkOut]
|
[7] |
P. Penrose, R. MacFarlane and W. J. Buchanan, “Approaches to the classification of high entropy file fragments,” Digital Investigation, vol.10, no.4, pp.372–384, 2013. doi: 10.1016/j.diin.2013.08.004
|
[8] |
T. T. Xu, M. Xu, Y. Z. Ren, et al., “A file fragment classification method based on grayscale image,” Journal of Computers, Vol.9, No.8, : ■–■.2014.[LinkOut]
|
[9] |
N. L. Beebe, L. A. Maddox, L. Liu, et al., “Sceadan: Using concatenated N-gram vectors for improved file and data type classification,” IEEE Transactions on Information Forensics and Security, vol.8, no.9, pp.1519–1530, 2013. doi: 10.1109/TIFS.2013.2274728
|
[10] |
M. McDaniel and M. H. Heydari, “Content based file type detection algorithms,” in Proceedings of 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the, Big Island, HI, USA, pp.10pp., 2003.[LinkOut]
|
[11] |
W. J. Li, K. Wang, S. J. Stolfo, et al., “Fileprints: identifying file types by n-gram analysis,” in Proceedings of Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop, West Point, NY, USA, pp.64–71, 2005.[LinkOut]
|
[12] |
S. L. Garfinkel, “Carving contiguous and fragmented files with fast object validation,” Digital Investigation, vol.4, pp.2–12, 2007. doi: 10.1016/j.diin.2007.06.017
|
[13] |
C. J. Veenman, “Statistical disk cluster classification for file carving,” in Proceedings of Third International Symposium on Information Assurance and Security, Manchester, UK, pp.393–398, 2007.[LinkOut]
|
[14] |
W. C. Calhoun and D. Coles, “Predicting the types of file fragments,” Digital Investigation, vol.5, pp.S14–S20, 2008. doi: 10.1016/j.diin.2008.05.005
|
[15] |
S. Axelsson, “The Normalised Compression Distance as a file fragment classifier,” Digital Investigation, vol.7, pp.S24–S31, 2010. doi: 10.1016/j.diin.2010.05.004
|
[16] |
S. Axelsson, K. A. Bajwa and M. V. Srikanth, File fragment analysis using normalized compression distance. Advances in Digital Forensics IX. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 171–182.[LinkOut]
|
[17] |
N. L. Beebe, L. A. Maddox, L. Liu, et al., “Sceadan: Using concatenated N-gram vectors for improved file and data type classification,” IEEE Transactions on Information Forensics and Security, vol.8, no.9, pp.1519–1530, 2013. doi: 10.1109/TIFS.2013.2274728
|
[18] |
K. Chen, Z. Du, S. Ye, et al., “Research on coarse/fine read algorithm based on a NAND flash page buffer design,” Acta Electronica Sinica, vol.46, no.11, pp.2619–2625, 2018.
|
[19] |
Y. Xue, Y. Tan, C. Liang, et al., “RootAgency: A digital signature-based root privilege management agency for cloud terminal devices,” Information Sciences, vol.444, pp.36–50, 2018. doi: 10.1016/j.ins.2018.02.069
|
[20] |
J. Shu, S. Liu, L. Liu, et al., “Research on link quality estimation mechanism for wireless sensor networks based on support vector machine,” Chinese Journal of Electronics, vol.26, no.2, pp.377–384, 2017. doi: 10.1049/cje.2017.01.013
|
[21] |
Y. Wu, J. Li, C. Song, et al., “Words in pairs neural networks for text classification,” Chinese Journal of Electronics, vol.29, no.3, pp.491–500, 2020. doi: 10.1049/cje.2020.03.005
|
[22] |
Y. Song, S. Yao, D. Yu, et al., “A new K-ary crisp decision tree induction with continuous valued attributes,” Chinese Journal of Electronics, vol.26, no.5, pp.999–1007, 2017. doi: 10.1049/cje.2017.07.015
|
[23] |
X. Wang, J. Li, X. Kuang, et al., “The security of machine learning in an adversarial setting: A survey,” Journal of Parallel and Distributed Computing, vol.130, pp.12–23, 2019. doi: 10.1016/j.jpdc.2019.03.003
|
[24] |
Z. Guan, Y. Zhang, L. Zhu, et al., “EFFECT: An efficient flexible privacy-preserving data aggregation scheme with authentication in smart grid,” Science China (Information Sciences), vol.62, no.3, pp.31–44, 2019.
|
[25] |
W. Li, W. Meng, Z. Tan, et al., “Design of multi-view based email classification for IoT systems via semi-supervised learning,” Journal of Network and Computer Applications, vol.128, pp.56–63, 2019. doi: 10.1016/j.jnca.2018.12.002
|
[26] |
L. Zhang, S. Hao and Q. Zhang, “Recovering SQLite data from fragmented flash pages,” Annals of Telecommunications, vol.74, no.7-8, pp.451–460, 2019. doi: 10.1007/s12243-019-00707-9
|
[27] |
Y. Li, S. Yao, K. Yang, et al., “A high-imperceptibility and histogram-shifting data hiding scheme for JPEG images,” IEEE Access, vol.7, pp.73573–73582, 2019. doi: 10.1109/ACCESS.2019.2920178
|
[28] |
M. Shen, B. Ma, L. Zhu, et al., “Cloud-based approximate constrained shortest distance queries over encrypted graphs with privacy protection,” IEEE Transactions on Information Forensics and Security, vol.13, no.4, pp.940–953, 2018. doi: 10.1109/TIFS.2017.2774451
|
[29] |
X. F. Gao, Y. A. Tan, H. W. Jiang, et al., “Boosting targeted black-box attacks via ensemble substitute training and linear augmentation,” Applied Sciences, vol.9, no.11, article no.2286, 2019. doi: 10.3390/app9112286
|
[30] |
L. Sportiello and S. Zanero, “File block classification by support vector machine,” in Proceedings of Sixth International Conference on Availability, Reliability and Security, Vienna, Austria, pp.307–312, 2011.[LinkOut]
|
[31] |
Wikipedia, “Lempel-Ziv complexity Specification,” https://en.wikipedia.org/wiki/Lempel-Ziv_complexity, 2018-8-17.
|
[32] |
F. Chang, C. Y. Guo, X. Lin, et al., “Tree decomposition for large-scale SVM problems,” in Proceedings of International Conference on Technologies and Applications of Artificial Intelligence, Hsinchu, Taiwan, China, pp.233–240, 2010.[LinkOut]
|
[33] |
S. Garfinkel, P. Farrell, V. Roussev, et al., “Bringing science to digital forensics with standardized forensic corpora,” Digital Investigation, vol.6, pp.S2–S11, 2009. doi: 10.1016/j.diin.2009.06.016
|