Citation:  JING Xiaoyan, XU Zhefeng, YANG Minghui, FENG Keqin. On the pAdic Complexity of the DingHellesethMartinsen Binary Sequences[J]. Chinese Journal of Electronics, 2021, 30(1): 6471. doi: 10.1049/cje.2020.08.016 
[1] 
A. Klapper and M. Goresky, "Feedback shift registers, 2adic span, and combiners with memory", J. Cryptol. , Vol. 10, No. 2, pp. 111147, 1997. doi: 10.1007/s001459900024

[2] 
A. Klapper and M. Goresky, "Cryptanalysis based on 2adic rational approximation", in: D. Coppersmith (Ed. ), Advances in Cryptology  Crypto 95, Lecture Notes in Computer Science, Springer, Heidelberg, Vol. 963, pp. 262273, 1995.

[3] 
R. Hofer and A. Winterhof, "On the 2adic complexity of the twoprime generator", IEEE Trans. Inf. Theory, Vol. 64, No. 8, pp. 59575960, 2018. doi: 10.1109/TIT.2018.2811507

[4] 
H. Hu, "Comments on a new method to compute the 2adic complexity of binary sequences", IEEE Trans. Inf. Theory, Vol. 64, No. 4, pp. 58035804, 2014. http://ieeexplore.ieee.org/document/6736120/

[5] 
Y. Sun, Q. Wang and T. Yan, "A lower bound on the 2adic complexity of modified Jacobi Sequences", Cryptogr. Commun. , Vol. 11, No. 2, pp. 337349, 2019. doi: 10.1007/s120950180300y

[6] 
Y. Sun, Q. Wang and T. Yan, "The exact autocorrelation distribution and 2adic complexity of a class of binary sequences with almost optimal autocorrelation", Cryptogr. Commun. , Vol. 10, No. 3, pp. 67477, 2018. doi: 10.1007/s120950170233x

[7] 
Y. Sun, T. Yan, L. Wang and Z. Chen, "The 2adic compelxity of a class of binary sequences with optimal autocorrealtion magnitude", Cryptogr. Commun. , DOI10.1007/s120950190004114, 2019. doi: 10.1007/s120950170233x

[8] 
T. Tian and W. Qi, "2adic complexity of binary $ m $sequences", IEEE Trans. Inform. Theory, Vol. 56, No. 1, pp. 450454, 2010. doi: 10.1109/TIT.2009.2034904

[9] 
Z. Xiao, X. Zeng and Z. Sun, "2adic complexity of two classes of generalized cyclotomic binary sequences", Int. J. Found. Comput. Sci. , Vol. 27, No. 7, pp. 879893, 2016. doi: 10.1142/S0129054116500350

[10] 
H. Xiong, L. Qu and C. Li, "A new method to compute the 2adic complexity of binary sequecnes", IEEE Trans. Inform. Theory, Vol. 60, No. 4, pp. 23992406, 2014. doi: 10.1109/TIT.2014.2304451

[11] 
H. Xiong, L. Qu and C. Li, "2adic complexity of binary sequences with interleaved strcture", Finite Fields Appl. , Vol. 33, pp. 1428, 2015. doi: 10.1016/j.ffa.2014.09.009

[12] 
M. Yang, L. Zhang and K. Feng, "On the 2adic complexity of a class of binary sequences of period $ 4p $ with optimal autocorrelation magnitude", IEEE Int. Symp. Inf. Theory, Los Angeles, USA, arXiv: 1904.13012, 2020.

[13] 
L. Zhang, J. Zhang, M. Yang and K. Feng, "On the 2adic complexity of the DingHellesethMartinsen binary sequecnes", IEEE Trans. Inf. Theory, Vol. 66, No. 7, pp. 46134620, 2020. doi: 10.1109/TIT.2020.2964171

[14] 
A. Klapper, "A survey of feedback with carry shift registers", SETA 2004, T. Helleseth et al. (Eds), LNCS 3486, pp. 5671, 2005.

[15] 
C. Ding, T. Helleseth and H. Martinsen, "New families of binary sequences with optimal threelevel autocorrelation", IEEE Trans. Inf. Theory, Vol. 47, No. 1, pp. 428433, 2001. doi: 10.1109/18.904555

[16] 
B. Berndt, R. Evans and K. Williams, Gauss and Jacobi Sums, John Wiley and Sons INC, 1998.

[17] 
T. Storer, Cyclotomy and Difference Sets, Markham, Chicago, 1967.

[18] 
J. Zhang and C. Zhao, "The linear complexity of a class of binary sequences with period $ 2p $", Algebra Eng. Commun. Comput. , Vol. 26, pp. 475491, 2015. doi: 10.1007/s0020001502618

[19] 
V. Edemskiy and A. Palvinskiy, "The linear complexity of binary sequences of length $ 2p $ with optimal threelevel autocorrelation", Inf. Process. Lett. , Vol. 116, pp. 153156, 2016. doi: 10.1016/j.ipl.2015.09.007
