Volume 30 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
PAN Yi, LIU Jin, TIAN Xu, LAN Wei, GUO Rui. Hippocampal Segmentation in Brain MRI Images Using Machine Learning Methods: A Survey[J]. Chinese Journal of Electronics, 2021, 30(5): 793-814. doi: 10.1049/cje.2021.06.002
Citation: PAN Yi, LIU Jin, TIAN Xu, LAN Wei, GUO Rui. Hippocampal Segmentation in Brain MRI Images Using Machine Learning Methods: A Survey[J]. Chinese Journal of Electronics, 2021, 30(5): 793-814. doi: 10.1049/cje.2021.06.002

Hippocampal Segmentation in Brain MRI Images Using Machine Learning Methods: A Survey

doi: 10.1049/cje.2021.06.002

This work is supported by the National Natural Science Foundation of China (No.61802442), the Natural Science Foundation of Hunan Province (No.2019JJ50775, No.2018JJ2534), the 111 Project (No.B18059), the Hunan Provincial Science and Technology Program (No.2018WK4001), the Science and Technology Base and Talent Special Project of Guangxi (No.AD20159044), and the Hunan Provincial Science and Technology Innovation Leading Plan (No.2020GK2019).

  • Received Date: 2020-11-11
    Available Online: 2021-09-02
  • The hippocampus is closely related to many brain diseases, such as Alzheimer's disease. Accurate measurement of the hippocampus is helpful for clinicians in identifying lesions and then diagnosing and treating the related brain diseases. Therefore, accurate segmentation of the hippocampus is of vital significance for the in-depth study of many brain diseases. However, the accurate measurement of the hippocampus depends on its accurate segmentation, and hippocampal segmentation has always been a challenging problem due to the small size, irregular shape, and fuzzy boundaries with surrounding tissues of the hippocampus. With the development of machine learning, many innovative methods have been proposed to segment the hippocampus. The purpose of this survey is to provide a comprehensive overview of hippocampal segmentation in brain MRI images using machine learning methods. First, a brief introduction to hippocampal segmentation in brain MRI images is given. Then, common evaluation metrics of hippocampal segmentation are introduced. Next, brain hippocampal segmentation methods based on traditional machine learning and deep learning are described. Subsequently, some common open datasets and toolkits applied to brain hippocampal segmentation are presented. Finally, objective conclusions regarding hippocampal segmentation in brain MRI images using machine learning methods are drawn, and future developments and trends are identified for brain hippocampal segmentation.
  • loading
  • P. R. Lewis and C. Shute, "The cholinergic limbic system:Projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest", Brain, Vol.90, No.3, pp.521-540, 1967.
    A. Treves and E. T. Rolls, "Computational analysis of the role of the hippocampus in memory", Hippocampus, Vol.4, No.3, pp.374-391, 1994.
    N. J. Fortin, K. L. Agster and H. B. Eichenbaum, "Critical role of the hippocampus in memory for sequences of events", Nature Neuroscience, Vol.5, No.5, pp.458-462, 2002.
    R. D. Rubin, P. D. Watson, M. C. Duff, et al., "The role of the hippocampus in flexible cognition and social behavior", Frontiers in Human Neuroscience, Vol.8, Page 742, 2014.
    J. Liu, M. Li, W. Lan, et al., "Classification of Alzheimer's disease using whole brain hierarchical network", IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol.15, No.2, pp.624-632, 2016.
    J. Liu, D. Zeng, R. Guo, et al., "Mmhge:Detecting mild cognitive impairment based on multi-atlas multi-view hybrid graph convolutional networks and ensemble learning", Cluster Computing, pp.1-11, 2020.
    M.-P. Hosseini, M.-R. Nazem-Zadeh, D. Pompili, et al., "Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients", Medical Physics, Vol.43, No.1, pp.538-553, 2016.
    Y. Wang, J. Wang, F.-X. Wu, et al., "AIMAFE:Autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning", Journal of Neuroscience Methods, Vol.343, Page 108840, 2020.
    J. Liu, Y. Sheng, W. Lan, et al., "Improved ASD classification using dynamic functional connectivity and multi-task feature selection", Pattern Recognition Letters, Vol.138, pp.82-87, 2020.
    Y. Kong, J. Gao, Y. Xu, et al., "Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier", Neurocomputing, Vol.324, pp.63-68, 2019.
    M. C. McKinnon, K. Yucel, A. Nazarov, et al., "A metaanalysis examining clinical predictors of hippocampal volume in patients with major depressive disorder", Journal of Psychiatry & Neuroscience:JPN, Vol.34, No.1, Page 41, 2009.
    X. Zhang, L. Wang, Y. Ding, et al., "Brain network analysis of schizophrenia based on the functional connectivity", Chinese Journal of Electronics, Vol.28, No.3, pp.535-541, 2019.
    Y. Xiang, J. Wang, G. Tan, et al., "Schizophrenia identification using multi-view graph measures of functional brain networks", Frontiers in Bioengineering and Biotechnology, Vol.7, Page 479, 2020.
    J. Liu, X. Wang, X. Zhang, et al., "MMM:Classification of schizophrenia using multi-modality multi-atlas feature representation and multi-kernel learning", Multimedia Tools and Applications, Vol.77, No.22, pp.29651-29667, 2018.
    N. Damodaran, "Automated segmentation of hippocampal volume:The next step in neuroradiologic diagnosis of mesial temporal sclerosis", American Journal of Neuroradiology, Vol.40, No.7, pp.E38-E38, 2019.
    T. Toda, S. L. Parylak, S. B. Linker, et al., "The role of adult hippocampal neurogenesis in brain health and disease", Molecular Psychiatry, Vol.24, No.1, pp.67-87, 2019.
    K. S. Anand and V. Dhikav, "Hippocampus in health and disease:An overview", Annals of Indian Academy of Neurology, Vol. 15, No. 4, Page 239, 2012.
    I. D. Apostolopoulos and T. A. Mpesiana, "Covid-19:Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks", Physical and Engineering Sciences in Medicine, Vol.43, No.2, pp.635-640, 2020.
    R. Li, H. Chen, Y. Peng, et al., "Ultrasound computed tomography of knee joint", Chinese Journal of Electronics, Vol.29, No.4, pp.705-716, 2020.
    J. Liu, Y. Pan, M. Li, et al., "Applications of deep learning to MRI images:A survey", Big Data Mining and Analytics, Vol.1, No.1, pp.1-18, 2018.
    J. Liu, J. Wang, Z. Tang, et al., "Improving Alzheimer's disease classification by combining multiple measures", IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol.15, No.5, pp.1649-1659, 2017.
    R. E. Hogan, K. E. Mark, I. Choudhuri, et al., "Magnetic resonance imaging deformation-based segmentation of the hippocampus in patients with mesial temporal sclerosis and temporal lobe epilepsy", Journal of Digital Imaging, Vol.13, No.1, pp.217-218, 2000.
    D. Shen, S. Moffat, S. M. Resnick, et al., "Measuring size and shape of the hippocampus in MR images using a deformable shape model", NeuroImage, Vol.15, No.2, pp.422-434, 2002.
    S. Duchesne, J. Pruessner and D. Collins, "Appearancebased segmentation of medial temporal lobe structures", NeuroImage, Vol.17, No.2, pp.515-531, 2002.
    B. Fischl, D. H. Salat, E. Busa, et al., "Whole brain segmentation:Automated labeling of neuroanatomical structures in the human brain", Neuron, Vol.33, No.3, pp.341-355, 2002.
    A. R. Khan, N. Cherbuin, W. Wen, et al., "Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (superdyn):Validation on hippocampus segmentation", NeuroImage, Vol.56, No.1, pp.126-139, 2011.
    M. Sdika, "Combining atlas based segmentation and intensity classification with nearest neighbor transform and accuracy weighted vote", Medical Image Analysis, Vol.14, No.2, pp.219-226, 2010.
    Y. Hao, T. Jiang and Y. Fan, "Iterative multi-atlas based segmentation with multi-channel image registration and jackknife context model", in 20129th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, Spain, pp.900-903, 2012.
    J. Doshi, G. Erus, Y. Ou, et al., "MUSE:Multi-atlas region segmentation utilizing ensembles of registration algorithms and parameters, and locally optimal atlas selection", NeuroImage, Vol.127, pp.186-195, 2016.
    S. Alchatzidis, A. Sotiras, E. I. Zacharaki, et al., "A discrete MRF framework for integrated multi-atlas registration and segmentation", International Journal of Computer Vision, Vol.121, No.1, pp.169-181, 2017.
    S. Pang, Z. Lu, W. Yang, et al., "Hippocampus segmentation through distance field fusion", International Workshop on Patch-based Techniques in Medical Imaging, Munich, Germany, pp.104-111, 2015.
    H. Zhu, Z. Tang, H. Cheng, et al., "Multi-atlas label fusion with random local binary pattern features:Application to hippocampus segmentation", Scientific Reports, Vol.9, No.1, pp.1-14, 2019.
    X.-W. Li, Q.-L. Li, S.-Y. Li, et al., "Local manifold learning for multiatlas segmentation:Application to hippocampal segmentation in healthy population and Alzheimer's disease", CNS Neuroscience & Therapeutics, Vol.21, No.10, pp.826-836, 2015.
    S. Pang, J. Jiang, Z. Lu, et al., "Hippocampus segmentation based on local linear mapping", Scientific Reports, Vol.7, No.1, pp.1-11, 2017.
    Z. Wu, Y. Guo, S. H. Park, et al., "Robust brain ROI segmentation by deformation regression and deformable shape model", Medical Image Analysis, Vol.43, pp.198-213, 2018.
    Y. Shao, J. Kim, Y. Gao, et al., "Hippocampal segmentation from longitudinal infant brain MR images via classification-guided boundary regression", IEEE Access, Vol.7, pp.33728-33740, 2019.
    G. D. L. Palafox, A. L. S. Ortíz, O. M. Melendez, et al., "Hippocampal segmentation using mean shift algorithm", 12th International Symposium on Medical Information Processing and Analysis, Tandil, Argentina, Page 101600D, 2016.
    C. Banerjee, T. Mukherjee and E. Pasiliao, "Feature representations using the reflected rectified linear unit (RRELU) activation", Big Data Mining and Analytics, Vol.3, No.2, pp.102-120, 2020.
    L. Schmarje, M. Santarossa, S.-M. Schröder, et al., "A survey on semi-, self- and unsupervised techniques in image classification", arXiv preprint, arXiv:2002.08721, 2020.
    S. Ghosh, N. Das, I. Das, et al., "Understanding deep learning techniques for image segmentation", ACM Computing Surveys (CSUR), Vol.52, No.4, pp.1-35, 2019.
    Y. Zhang, X. Lei, Z. Fang, et al., "Circrna-disease associations prediction based on metapath2vec++ and matrix factorization", Big Data Mining and Analytics, Vol.3, No.4, pp.280-291, 2020.
    F. Zhong and Y. Liu, "Image-based 3D pose reconstruction of surgical needle for robot-assisted laparoscopic suturing", Chinese Journal of Electronics, Vol.27, No.3, pp.476-482, 2018.
    B. Zou, Q. Liu, K. Yue, et al., "Saliency-based segmentation of optic disc in retinal images", Chinese Journal of Electronics, Vol.28, No.1, pp.71-75, 2019.
    J. Cheng, J. Liu, H. Yue, et al., "Prediction of glioma grade using intratumoral and peritumoral radiomic features from multiparametric MRI images", IEEE/ACM Transactions on Computational Biology and Bioinformatics, DOI:10.1109/TCBB.2020.3033538, 2020.
    L. Liu, J. Cheng, Q. Quan, et al., "A survey on U-shaped networks in medical image segmentations", Neurocomputing, Vol.409, pp.244-258, 2020.
    M. Cabezas, A. Oliver, X. Lladó, et al., "A review of atlasbased segmentation for magnetic resonance brain images", Computer Methods and Programs in Biomedicine, Vol.104, No.3, pp.e158-e177, 2011.
    V. Dill, A. R. Franco and M. S. Pinho, "Automated methods for hippocampus segmentation:The evolution and a review of the state of the art", Neuroinformatics, Vol.13, No.2, pp.133-150, 2015.
    J. E. Iglesias and M. R. Sabuncu, "Multi-atlas segmentation of biomedical images:A survey", Medical Image Analysis, Vol.24, No.1, pp.205-219, 2015.
    H.-H. Chang, A. H. Zhuang, D. J. Valentino, et al., "Performance measure characterization for evaluating neuroimage segmentation algorithms", NeuroImage, Vol.47, No.1, pp.122-135, 2009.
    A. A. Taha and A. Hanbury, "Metrics for evaluating 3D medical image segmentation:Analysis, selection, and tool", BMC Medical Imaging, Vol.15, No.1, Page 29, 2015.
    Y. Hao, T. Jiang and Y. Fan, "Shape-constrained multi-atlas based segmentation with multichannel registration", Medical Imaging 2012:Image Processing, San Diego, California, USA, Page 83143N, 2012.
    J. Alvén, A. Norlén, O. Enqvist, et al., "Überatlas:Fast and robust registration for multi-atlas segmentation", Pattern Recognition Letters, Vol.80, pp.249-255, 2016.
    K. K. Leung, J. Barnes, G. R. Ridgway, et al., "Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease", NeuroImage, Vol.51, No.4, pp.1345-1359, 2010.
    J. M. Lötjönen, R. Wolz, J. R. Koikkalainen, et al., "Fast and robust multi-atlas segmentation of brain magnetic resonance images", NeuroImage, Vol.49, No.3, pp.2352-2365, 2010.
    T. R. Langerak, U. A. van der Heide, A. N. Kotte, et al., "Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (simple)", IEEE Transactions on Medical Imaging, Vol.29, No.12, pp.2000-2008, 2010.
    M. R. Sabuncu, B. T. Yeo, K. Van Leemput, et al., "A generative model for image segmentation based on label fusion", IEEE Transactions on Medical Imaging, Vol.29, No.10, pp.1714-1729, 2010.
    A. J. Asman and B. A. Landman, "Robust statistical label fusion through consensus level, labeler accuracy, and truth estimation (collate)", IEEE Transactions on Medical Imaging, Vol.30, No.10, pp.1779-1794, 2011.
    H. Wang, J. W. Suh, S. Das, et al., "Regressionbased label fusion for multi-atlas segmentation", IEEE, DOI:10.1109/CVPR.2011.5995382, 2011.
    P. Coupé, J. V. Manjón, V. Fonov, et al., "Patchbased segmentation using expert priors:Application to hippocampus and ventricle segmentation", NeuroImage, Vol.54, No.2, pp.940-954, 2011.
    F. Rousseau, P. A. Habas and C. Studholme, "A supervised patch-based approach for human brain labeling", IEEE Transactions on Medical Imaging, Vol.30, No.10, pp.1852-1862, 2011.
    P. Coupé, S. F. Eskildsen, J. V. Manjón, et al., "Simultaneous segmentation and grading of anatomical structures for patient's classification:Application to Alzheimer's disease", NeuroImage, Vol.59, No.4, pp.3736-3747, 2012.
    Y. Wang, X. Wu, G. Ma, et al., "Patch-based hippocampus segmentation using a local subspace learning method", International Workshop on Machine Learning in Medical Imaging, Athens, Greece, pp.86-94, 2016.
    Y. Wang, G. Ma, X. Wu, et al., "Patch-based label fusion with structured discriminant embedding for hippocampus segmentation", Neuroinformatics, Vol.16, No.3-4, pp.411-423, 2018.
    H. Zhu, H. Cheng, X. Yang, et al., "Metric learning for multiatlas based segmentation of hippocampus", Neuroinformatics, Vol.15, No.1, pp.41-50, 2017.
    G. Wu, Q. Wang, D. Zhang, et al., "A generative probability model of joint label fusion for multi-atlas based brain segmentation", Medical Image Analysis, Vol.18, No.6, pp.881-890, 2014.
    H. Wang, J. W. Suh, S. R. Das, et al., "Multi-atlas segmentation with joint label fusion", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.35, No.3, pp.611-623, 2012.
    G. Wu, M. Kim, G. Sanroma, et al., "Hierarchical multi-atlas label fusion with multi-scale feature representation and labelspecific patch partition", NeuroImage, Vol.106, pp.34-46, 2015.
    J. B. Tenenbaum, V. De Silva and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction", Science, Vol.290, No.5500, pp.2319-2323, 2000.
    L. Wang, Y. Guo, X. Cao, et al., "Consistent multi-atlas hippocampus segmentation for longitudinal MR brain images with temporal sparse representation", International Workshop on Patch-based Techniques in Medical Imaging, Athens, Greece, pp.34-42, 2016.
    R. Wolz, R. A. Heckemann, P. Aljabar, et al., "Measurement of hippocampal atrophy using 4D graph-cut segmentation:Application to ADNI", NeuroImage, Vol.52, No.1, pp.109-118, 2010.
    Y. Guo, G. Wu, P.-T. Yap, et al., "Segmentation of infant hippocampus using common feature representations learned for multimodal longitudinal data", International Conference on Medical Image Computing and ComputerAssisted Intervention, Munich, Germany, pp.63-71, 2015.
    Y. Guo, P. Dong, S. Hao, et al., "Automatic segmentation of hippocampus for longitudinal infant brain MR image sequence by spatial-temporal hypergraph learning", International Workshop on Patch-based Techniques in Medical Imaging, Athens, Greece, 2016, pp.1-8.
    P. Dong, Y. Guo, D. Shen, et al., "Multi-atlas and multi-modal hippocampus segmentation for infant MR brain images by propagating anatomical labels on hypergraph", International Workshop on Patch-based Techniques in Medical Imaging, Munich, Germany, pp.188-196, 2015.
    Q. Zheng and Y. Fan, "Integrating semi-supervised label propagation and random forests for multi-atlas based hippocampus segmentation", 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, USA, pp.154-157, 2018.
    S. Tangaro, N. Amoroso, M. Boccardi, et al., "Automated voxel-by-voxel tissue classification for hippocampal segmentation:Methods and validation", Physica Medica, Vol.30, No.8, pp.878-887, 2014.
    Y. Hao, T. Wang, X. Zhang, et al., "Local label learning (LLL) for subcortical structure segmentation:Application to hippocampus segmentation", Human Brain Mapping, Vol.35, No.6, pp.2674-2697, 2014.
    A. van Opbroek, H. C. Achterberg, M. W. Vernooij, et al., "Transfer learning by feature-space transformation:A method for hippocampus segmentation across scanners", NeuroImage:Clinical, Vol.20, pp.466-475, 2018.
    T. Tong, R. Wolz, P. Coupé, et al., "Segmentation of MR images via discriminative dictionary learning and sparse coding:Application to hippocampus labeling", NeuroImage, Vol.76, pp.11-23, 2013.
    F. E. Athó, A. J. Traina, C. Traina, et al., "The similarity cloud model:A novel and efficient hippocampus segmentation technique", 201124th International Symposium on Computer-Based Medical Systems (CBMS), Bristol, UK, pp.1-6, 2011.
    P. A. Miranda, A. X. Falcão and J. K. Udupa, "Cloud bank:A multiple clouds model and its use in MR brain image segmentation", 2009 IEEE International Symposium on Biomedical Imaging:From Nano to Macro, Boston, Massachusetts, USA, pp.506-509, 2009.
    H. Wang, S. R. Das, J. W. Suh, et al., "A learning-based wrapper method to correct systematic errors in automatic image segmentation:Consistently improved performance in hippocampus, cortex and brain segmentation", NeuroImage, Vol.55, No.3, pp.968-985, 2011.
    A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet classification with deep convolutional neural networks", Advances in Neural Information Processing Systems, Lake Tahoe, Nevada, USA, pp.1097-1105, 2012.
    J. Long, E. Shelhamer and T. Darrell, "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, pp.3431-3440, 2015.
    Z. Xie and D. Gillies, "Near real-time hippocampus segmentation using patch-based canonical neural network", arXiv preprint, arXiv:1807.05482, 2018.
    D. Ataloglou, A. Dimou, D. Zarpalas, et al., "Fast and precise hippocampus segmentation through deep convolutional neural network ensembles and transfer learning", Neuroinformatics, Vol.17, No.4, pp.563-582, 2019.
    S. Pang, Z. Lu, J. Jiang, et al., "Hippocampus segmentation based on iterative local linear mapping with representative and local structure-preserved feature embedding", IEEE Transactions on Medical Imaging, Vol.38, No.10, pp.2271-2280, 2019.
    Y. Liu and Z. Yan, "A combined deep-learning and lattice boltzmann model for segmentation of the hippocampus in MRI", Sensors, Vol.20, No.13, Page 3628, 2020.
    Y. Guo, G. Wu, L. A. Commander, et al., "Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features", International Conference on Medical Image Computing and Computer-Assisted Intervention, Boston, MA, USA, pp.308-315, 2014.
    N. Amoroso, R. Errico, S. Bruno, et al., "Hippocampal unified multi-atlas network (human):Protocol and scale validation of a novel segmentation tool", Physics in Medicine & Biology, Vol.60, No.22, Page 8851, 2015.
    B. Thyreau, K. Sato, H. Fukuda, et al., "Segmentation of the hippocampus by transferring algorithmic knowledge for large cohort processing", Medical Image Analysis, Vol.43, pp.214-228, 2018.
    D. Chen, W. Liu, Y. Huang, et al., "Enhancement mask for hippocampus detection and segmentation", 2018 IEEE International Conference on Information and Automation (ICIA), Wuyi Mountain, Fujian, China, pp.455-460, 2018.
    N. K. Dinsdale, M. Jenkinson and A. I. Namburete, "Spatial warping network for 3D segmentation of the hippocampus in MR images", in International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, pp.284-291, 2019.
    C. Wachinger, M. Reuter and T. Klein, "Deepnat:Deep convolutional neural network for segmenting neuroanatomy", NeuroImage, Vol.170, pp.434-445, 2018.
    O. Ronneberger, P. Fischer and T. Brox, "U-net:Convolutional networks for biomedical image segmentation", International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Germany, pp.234-241, 2015.
    Y. Chen, B. Shi, Z. Wang, et al., "Accurate and consistent hippocampus segmentation through convolutional LSTM and view ensemble", International Workshop on Machine Learning in Medical Imaging, Quebec City, QC, Canada, pp.88-96, 2017.
    Y. Chen, B. Shi, Z. Wang, et al., "Hippocampus segmentation through multi-view ensemble convnets", 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, pp.192-196, 2017.
    I. Brusini, O. Lindberg, J.-S. Muehlboeck, et al., "Shape information improves the cross-cohort performance of deep learning-based segmentation of the hippocampus", Frontiers in Neuroscience, DOI:10.3389/fnins.2020.00015, 2020.
    C. Jia, D. Liu, F. Kong, et al., "Three-dimensional segmentation of hippocampus in brain MRI images based on 3CN-net", Proceedings of the 20193rd International Conference on Innovation in Artificial Intelligence, Suzhou, China, pp.17-20, 2019.
    H. Zhu, F. Shi, L. Wang, et al., "Dilated dense U-net for infant hippocampus subfield segmentation", Frontiers in Neuroinformatics, Vol.13, Page 30, 2019.
    W. Yao, S. Wang and H. Fu, "Hippocampus segmentation in MRI using side U-net model", International Conference on Neural Information Processing, Sydney, NSW, Australia, pp.143-150, 2019.
    M. Goubran, E. E. Ntiri, H. Akhavein, et al., "Hippocampal segmentation for brains with extensive atrophy using threedimensional convolutional neural networks", Human Brain Mapping, Vol.41, No.2, pp.291-308, 2020.
    B. Hou, G. Kang, N. Zhang, et al., "Multi-target interactive neural network for automated segmentation of the hippocampus in magnetic resonance imaging", Cognitive Computation, Vol.11, No.5, pp.630-643, 2019.
    L. Cao, L. Li, J. Zheng, et al., "Multi-task neural networks for joint hippocampus segmentation and clinical score regression", Multimedia Tools and Applications, Vol.77, No.22, pp.29669-29686, 2018.
    M. Liu, F. Li, H. Yan, et al., "A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease", NeuroImage, Vol.208, Page 116459, 2020.
    M. Boccardi, M. Bocchetta, F. C. Morency, et al., "Training labels for hippocampal segmentation based on the EADCADNI harmonized hippocampal protocol", Alzheimer's & Dementia, Vol.11, No.2, pp.175-183, 2015.
    Y. Liu, C. Wang and Y. Wei, "Hippocampus segmentation in MR image based on atlas registration and broad learning", 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, pp.2707-2711, 2019
    K. Jafari-Khouzani, K. V. Elisevich, S. Patel, et al., "Dataset of magnetic resonance images of nonepileptic subjects and temporal lobe epilepsy patients for validation of hippocampal segmentation techniques", Neuroinformatics, Vol.9, No.4, pp.335-346, 2011.
    K. Sato, Y. Taki, H. Fukuda, et al., "Neuroanatomical database of normal Japanese brains", Neural Networks, Vol.16, No.9, pp.1301-1310, 2003.
    L. Xie, L. E. Wisse, S. R. Das, et al., "Accounting for the confound of meninges in segmenting entorhinal and perirhinal cortices in T1-weighted MRI", International Conference on Medical Image Computing and Computerassisted Intervention, Athens, Greece, pp.564-571, 2016.
    A. Zandifar, V. S. Fonov, J. C. Pruessner, et al., "The EADCADNI harmonized protocol for hippocampal segmentation:A validation study", NeuroImage, Vol.181, pp.142-148, 2018.
    A. G. Roy, S. Conjeti, N. Navab, et al., "Quicknat:A fully convolutional network for quick and accurate segmentation of neuroanatomy", NeuroImage, Vol.186, pp.713-727, 2019.
    A. Kaku, C. V. Hegde, J. Huang, et al., "Darts:Denseunetbased automatic rapid tool for brain segmentation", arXiv preprint, arXiv:1911.05567, 2019.
    D. Carmo, B. Silva, C. Yasuda, et al., "Hippocampus segmentation on epilepsy and Alzheimer's disease studies with multiple convolutional neural networks", arXiv preprint, arXiv:2001.05058, 2020.
    Y. Li, H. Li and Y. Fan, "Acenet:Anatomical contextencoding network for neuroanatomy segmentation", arXiv preprint, arXiv:2002.05773, 2020.
    Y. Huo, Z. Xu, Y. Xiong, et al., "3D whole brain segmentation using spatially localized atlas network tiles", NeuroImage, Vol.194, pp.105-119, 2019.
    J. V. Manjón and P. Coupé, "volBrain:An online MRI brain volumetry system", Frontiers in Neuroinformatics, Vol.10, Page 30, 2016.
    P. N. Hadar, L. G. Kini, C. Coto, et al., "Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy", NeuroImage:Clinical, Vol.20, pp.1139-1147, 2018.
    M. M. Chakravarty, P. Steadman, M. C. van Eede, et al., "Performing label-fusion-based segmentation using multiple automatically generated templates", Human Brain Mapping, Vol.34, No.10, pp.2635-2654, 2013.
    J. Pipitone, M. T. M. Park, J. Winterburn, et al., "Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates", NeuroImage, Vol.101, pp.494-512, 2014.
    W. Lan, D. Lai, Q. Chen, et al., "LDICDL:Lncrna-disease association identification based on collaborative deep learning", IEEE/ACM Transactions on Computational Biology and Bioinformatics, DOI:10.1109/TCBB.2020.3034910, 2020.
    M. Lu and F. Li, "Survey on lie group machine learning", Big Data Mining and Analytics, Vol.3, No.4, pp.235-258, 2020.
    J. Liu, Y. Pan, F.-X. Wu, et al., "Enhancing the feature representation of multi-modal MRI data by combining multiview information for MCI classification", Neurocomputing, Vol.400, pp.322-332, 2020.
    X. Zhang, S. Lu, S.-H. Wang, et al., "Diagnosis of COVID-19 pneumonia via a novel deep learning architecture", Journal of Computer Science and Technology, DOI:10.1007/s11390-020-0679-8, 2021.
    D. Meng and L. Sun, "Some new trends of deep learning research", Chinese Journal of Electronics, Vol.28, No.6, pp.1087-1090, 2019.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (397) PDF downloads(95) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint