GAO Chenqiang, LI Xindou, ZHOU Fengshun, MU Song. Face Liveness Detection Based on the Improved CNN with Context and Texture Information[J]. Chinese Journal of Electronics, 2019, 28(6): 1092-1098. doi: 10.1049/cje.2019.07.012
Citation: GAO Chenqiang, LI Xindou, ZHOU Fengshun, MU Song. Face Liveness Detection Based on the Improved CNN with Context and Texture Information[J]. Chinese Journal of Electronics, 2019, 28(6): 1092-1098. doi: 10.1049/cje.2019.07.012

Face Liveness Detection Based on the Improved CNN with Context and Texture Information

doi: 10.1049/cje.2019.07.012
Funds:  This work is supported by the National Natural Science Foundation of China (No.61571071) and Chongqing Research Program of Basic Research and Frontier Technology (No.cstc2018jcyjAX0227).
  • Received Date: 2018-10-08
  • Rev Recd Date: 2019-04-29
  • Publish Date: 2019-11-10
  • Face liveness detection, as a key module of real face recognition systems, is to distinguish a fake face from a real one. In this paper, we propose an improved Convolutional neural network (CNN) architecture with two bypass connections to simultaneously utilize low-level detailed information and high-level semantic information. Considering the importance of the texture information for describing face images, texture features are also adopted under the conventional recognition framework of Support vector machine (SVM). The improved CNN and the texture feature based SVM are fused. Context information which is usually neglected by existing methods is well utilized in this paper. Two widely used datasets are used to test the proposed method. Extensive experiments show that our method outperforms the state-of-the-art methods.
  • loading
  • J. Liu, X. Jing, S. Sun, et al., "Local gabor dominant direction pattern for face recognition", Chinese Journal of Electronics, Vol.24, No.2, pp.245-250, 2015.
    J. Yang, Z. Lei and S. Z. Li, "Learn convolutional neural network for face anti-spoofing", arXiv preprint arXiv:1408.5601, 2014.
    D. Wen, H. Han and A. k. Jain, "Face spoof detection with image distortion analysis", IEEE Transactions on Information Forensics & Security, Vol.10, No.4, pp.746-761, 2015.
    T. Ojala, M. pietikainen and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns", IEEE Transactions on Pattern Analysis & Machine Intelligence, Vol.24, No.7, pp.971-987, 2002.
    D. Dalal and B. Triggs, "Histograms of oriented gradients for human detection", IEEE Computer Society Conference on Computer Vision & Pattern Recognition, San Diego, CA, USA, pp.886-893, 2005.
    Z. Boulkenafet, J. Komulainen and A. Hadid, "Histograms of oriented gradients for human detection", Face Spoofing Detection Using Colour Texture Analysis, Vol.11, No.8, pp.1818-1830, 2017.
    H. Fan, Z. Liang, Y. Yi, et al., "Unsupervised person re-identification:Clustering and fine-tuning", ACM Transactions on Multimedia Computing, Communications, and Applications, Vol.14, No.4, Article No.83, 18 pages, 2018.
    W. Jun, L. Jing, C. Jun, et al., "Face alignment by coarsetofine shape estimation", Chinese Journal of Electronics, Vol.27, No.6, pp.1183-1191, 2018.
    Y. Liu, A. Jourabloo and X. Liu, "Learning deep models for face anti-spoofing:Binary or auxiliary supervision", Proc. of the IEEE Computer Vision and Pattern Recognition, Salt Lake, Utah, USA, pp.389-398, 2018.
    A. Pinto, H. Pedrini, W. R. Schwartz, et al., "Face spoofing detection through visual codebooks of spectral temporal cubes", IEEE Transactions on Image Processing, Vol.24, No.12, pp.4726-4740, 2015.
    V. Ojansivu and J. Heikkila, "Blur insensitive texture classification using local phase quantization", International Conference on Image & Signal Processing, Berlin, Heidelberg, pp.236-243, 2008.
    R. Nosaka, Y. Ohkawa and k. Fukui, "Feature extraction based on co-occurrence of adjacent local binary patterns", Pacific Rim Conference on Advances in Image & Video Technology, Berlin, Heidelberg, pp.82-91, 2011.
    B. Peixoto, C. Michilassi and A. Rocha, "Face liveness detection under bad illumination conditions", Pacific Rim Conference on Advances in Image & Video Technology, Brussels, Belgium, pp.82-91, 2011.
    J. Maata, A. Hadid and M. Pietikainen, "Face spoofing detection from single images using texture and local shape analysis", IET Biometrics, Vol.1, No.1, pp.3-10, 2012.
    T. Pereira, A. Anjos, J. Martino, et al., "LBP-TOP based countermeasure against face spoofing attacks", International Conference on Computer Vision, Berlin, Heidelberg, pp.121-132, 2012.
    S. Bharadwaj, T. Dhamaecha, M. Vatsa, et al., "Computationally efficient face spoofing detection with motion magnification", Computer Vision and Pattern Recognition Workshops, Portland, Oregon, USA, pp.105-1110, 2013.
    Z. Zhang, J. Yan, S. Liu, et al., "A face antispoofing database with diverse attacks", International Conference on Biometrics, New Delhi, India, pp.26-31, 2012.
    L. Li, Z. Xia, L. Li, et al., "Face antispoofing via hybrid convolutional neural network", International Conference on the Frontiers and Advances in Data Science, pp.120-124, 2017.
    Y. Atoum, Y. Liu, A. Jourabloo, et al., "Face anti-spoofing using patch and depth-based cnns", IEEE International Joint Conference on Biometrics, Xi'an, China, pp.319-328, 2018.
    Z. Xu, S. Li and W. Deng, "Learning temporal features using lstm-cnn architecture for face antispoofing", Asian Conference on Pattern Recognition, Kuala Lumpur, Malaysia, pp.141-145, 2016.
    G. Huang, Z. Liu, L. Maaten, et al., "Densely connected convolutional networks", IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, pp.2261-2269, 2017.
    L. Jian, W. Zheng, W. Tao, et al., "An android malware detection system based on feature fusion", Chinese Journal of Electronics, Vol.27, No.6, pp.1206-2213, 2018.
    X. Liu, M. Kan, W. Wu, et al., "VipLFaceNet:An open source deep face recognition SDK", Frontiers of Computer Science, Vol.11, No.2, pp.208-218, 2016.
    I. Chingovska, A. Ajos, S. Marchel, et al., "On the effectiveness of local binary patterns in face antispoofing", Biometrics Special Interest Group, Darmstadt, Germany, pp.1-7, 2012.
    S. Bengio and J. Mariethoz, "A statistical significance test for person authentication", The Speaker and Language Recognition Workshop, pp.237-244, Toledo, USA, 2004.
    L. Li, X. Feng, Z. Boulkenafet, et al., "An original face anti-spoofing approach using partial convolutional neural network", International Conference on Image Processing Theory, Tools and Applications, Oulu, Finland, pp.1-6, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (101) PDF downloads(5912) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return