Citation: | GAN Junying, JIANG Kaiyong, TAN Haiying, HE Guohui. Facial Beauty Prediction Based on Lighted Deep Convolution Neural Network with Feature Extraction Strengthened[J]. Chinese Journal of Electronics, 2020, 29(2): 312-321. doi: 10.1049/cje.2020.01.009 |
Krizhevsky A., Sutskever I., and Hinton G. “Imagenet classification with deep convolutional neural networks”, Advances in neural information processing systems, Vol.25, No.2, pp.1097-1105, 2012.
|
Zeiler M. D. and Fergus R. “Visualizing and understanding convolutional neural networks”, European Conference on Computer Vision, Zurich, Switzerland, pp.818-833, 2014.
|
Sun Y., Wang X. and Tang X. “Deep Learning Face Representation from Predicting 10,000 Classes”, 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, pp.1891-1898, 2014.
|
Simonyan K. and Zisserman A. “Very deep convolutional networks for large-scale image recognition”, Computer Science, Vol.1, No.1, pp.1-14, 2014.
|
Szegedy C., Liu W., Jia Y., et al., “Going Deeper with Convolutions”, 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, pp.1-9, 2015.
|
He K., Zhang X., Ren S., et al., “Deep residual learning for image recognition”, 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, Vol.1, pp.770-778, 2016.
|
Ren S., He K., Girshick R., et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Montreal, Canada, Vol.39, No.6, pp.1137-1149, 2015.
|
Sun Y., Chen Y., Wang X., et al., “Deep learning face representation by joint identification verification”, The 28 Annual Conference on Neural Information Processing Systems, pp.1988-1996, 2014.
|
He K., Zhang X., Ren S., et al., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, 2015 IEEE International Conference on Computer Vision, Santiago, Chile, pp.1026-1034, 2015.
|
Huang G.B., Ramesh M., Berg T., et al., “Labeled faces in the wild: A database for studying face recognition in unconstrained environments”, Advances in Face Detection and Facial Image Analysis, pp.189-248,2008.
|
Liu W., Anguelov D., Erhan D., et al., “SSD: Single Shot MultiBox Detector”, The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, pp.21—37, 2016.
|
Gray D., Yu K., Xu W., et al., “Predicting Facial Beauty without Landmark”, European Conference on Computer Vision, Heraklion, Crete, Greece, Vol.6316, No.4, pp.434-447, 2010.
|
Xie D., Liang L., Jin L. W., et al., “SCUT-FBP: a benchmark dataset for facial beauty perception”, International Conference on Systems, Man, and Cybernetics, Kowloon, China, pp.1821-1826, 2015.
|
Xu J, Jin L W, Liang L, et al., “A new humanlike facial attractiveness predictor with cascaded fine-tuning deep learning model”, Computer Science, Vol.70, No.1, pp.45-79, 2015.
|
Xu J., Jin L., Liang L., et al., “Facial attractiveness prediction using psychologically inspired convolutional neural network (PI-CNN)”, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, LA, USA, pp.335-339, 2017.
|
Taigman Y., Yang M., Marc, et al., “DeepFace: Closing the Gap to Human-Level Performance in Face Verification”, 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, pp.1701-1708, 2014.
|
Wu X, He R, Sun Z, et al., “A Light CNN for Deep Face Representation with Noisy Labels”, IEEE Transactions on Information Forensics and Security, Vol.13, No.11, pp.2884-2896, 2018.
|
Goodfellow I. J., Warde-Farley D., Mirza M., et al., “Maxout Networks”, Computer Science, Vol.28, No.3, pp.1319-1327, 2013.
|
Gan J. Y., Zhai Y. K. and Wang B., “Unconstrained facial beauty prediction based on multi-scale k-means”, Chinese Journal of Electronics, Vol.26, No.3, pp.548-556, 2017.
|
Sun Y., Chen Y., Wang X., et al., “Deep convolutional network cascade for facial point detection”, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, pp.3476-3483, 2013.
|
Lin M., Chen Q. and Yan S., “Network in Network”, Computer Science, Vol.1, No.1, pp.85-97, 2013.
|