Citation: | YANG Xianglin, TONG Yunhai, YANG Jianjun, et al., “Improved IAMB with Expanded Markov Blanket for High-Dimensional Time Series Prediction,” Chinese Journal of Electronics, vol. 25, no. 2, pp. 264-269, 2016, doi: 10.1049/CJE.2016.03.011 |
T. Buchen and K. Wohlrabe, "Forecasting with many predictors: Is boosting a viable alternative?", Economics Letters, Vol.113, No.1, pp.16-18, 2011.
|
R. Giacomini and H. White, "Tests of conditional predictive ability", Econometrica, Vol.74, No.6, pp.1545-1578, 2006.
|
J.H. Stock and M.W. Watson, "Forecasting using principal components from a large number of predictors", Journal of the American Statistical Association, Vol.97, No.460, pp.1167-1179, 2002.
|
C.D. Mol, D. Giannone and L. Reichlin, "Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to principal components", Journal of Econometrics, Vol.146, No.2, pp.318-328, 2008.
|
J.H. Stock and M.W. Watson, "Macroeconomic forecasting using diffusion indexes", Journal of Business and Economic Statistics, Vol.20, No.2, pp.147-162, 2002.
|
C. Fernandez, E. Ley and M.F.J. Steel, "Benchmark priors for Bayesian model averaging", Journal of Econometrics, Vol.100, No.2, pp.381-427, 2001.
|
C.F. Aliferis, A. Statnikov, I. Tsamardinos, et al., "Local causal and Markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation", J. Machine Learn. Res., No.11, pp.171-234, 2010.
|
P. Spirtes, C.N. Glymour and R. Scheines, Causation, Prediction, and Search, Vol.2, MIT Press, Cambridge, Mass, 2000.
|
Y. Zhang, Z. Zhang, K. Liu, et al., "An improved IAMB algorithm for Markov blanket discovery", Journal of Computers, Vol.5, No.11, pp.1755-1761, 2000.
|
I. Tsamardinos, C.F Aliferis and A. Statnikovs, "Algorithms for large scale Markov blanket discovery", FLAIRS Conference, Florida, USA, pp.376-381, 2003.
|
S.K. Fu and M.C. Desmarais, "Markov blanket based feature selection: A review of past decade", ICDMKE, London, UK, pp.321-328, 2010.
|
D. Koller and M. Sahami, "Toward optimal feature selection", ICML, Bari, Italy, pp.284-292, 1996.
|
D. Margaritis and S. Thrun, "Bayesian network induction via local neighborhoods", NIPS, Denver, Colorado, USA, pp.505-511, 1999.
|
J.P. Pellet and A. Elisseeff, "Using Markov blankets for causal structure learning", J. Machine Learn. Res., No.9, pp.1295-1342, 2008.
|
Z. Yishi, X. Hong, H. Yang, et al., "S-IAMB algorithm for Markov blanket discovery", APCIP 2009, IEEE, Shenzhen, Guangdong, China, Vol.2, pp.379-382, 2009.
|
Y. Zhang, Z. Zhang, K. Liu, et al., "An improved IAMB algorithm for Markov blanket discovery", Journal of Computers, Vol.5, No.11, pp.1755-1761, 2010.
|
S. Yaramakala and D. Margaritis, "Speculative Markov blanket discovery for optimal feature selection", Proceedings of the Fifth ICDM, Washington, DC, USA, pp.809-812, 2005.
|
I. Tsamardinos, L.E. Brown and C.F. Aliferis, "The max-min hillclimbing Bayesian network structure learning algorithm", Machine Learning, Vol.65, No.1, pp.31-78, 2006.
|
C. Aliferis, I. Tsamardinos and A. Statnikov. "HITON, a novel Markov blanket algorithm for optimal variable selection", AMIA Annual Symposium Proceedings, pp.21-25, 2003.
|
J.M. Pena, R. Nilsson, J. Bjorkegren, et al., "Towards scalable and data efficient learning of Markov boundaries", International Journal of Approximate Reasoning, Vol.45, No.2, pp.211-231, 2007.
|
S.K. Fu and M.C. Desmarais, "Local learning algorithm for Markov blanket discovery", Advances in AI, Gold Coast, Australia, pp.68-79, 2007.
|
S.K. Fu and M.C. Desmarais, "Fast Markov blanket discovery algorithm via local learning within single pass", Advances in AI, Windsor, Canada, pp.96-107, 2008.
|
Z.X. Wang and L.W. Chan, "Learning Bayesian network from Markov random fields: An efficient algorithm for linear models", ACM Transaction on Knowledge Discovery from Data, Vol.6, No.3, Article No.10, 2012.
|