LI Guangming and LYU Shanxiang, “Extracting Chaotic Signal from Noisy Environment: A Random Searching Method,” Chinese Journal of Electronics, vol. 24, no. 3, pp. 584-589, 2015, doi: 10.1049/cje.2015.07.025
Citation: LI Guangming and LYU Shanxiang, “Extracting Chaotic Signal from Noisy Environment: A Random Searching Method,” Chinese Journal of Electronics, vol. 24, no. 3, pp. 584-589, 2015, doi: 10.1049/cje.2015.07.025

Extracting Chaotic Signal from Noisy Environment: A Random Searching Method

doi: 10.1049/cje.2015.07.025
Funds:  This work is supported by the National Natural Science Foundation of China (No.61170216, No.61372082).
  • Received Date: 2014-08-12
  • Rev Recd Date: 2014-10-15
  • Publish Date: 2015-07-10
  • The problem of Blind source extraction (BSE) regarding a chaotic signal is addressed in this paper, by employing the newly defined Proliferation exponent (PE). The properties of gradient pursuit algorithm based on PE are further articulated, especially the infelicity to tackle a BSE problem. Subsequently, we devise a constraint optimization algorithm called Orthogonal random searching (ORS) to accomplish the optimization task, which in essence searches for optimal solutions with the principle of Markov chain Monte Carlo (MCMC). Experimental results reveal that this PE-based random searching method can extract the desired chaotic signal among multiple Gaussian mixtures, as well as showing robustness against noise contamination.
  • loading
  • J. Yang, L. Nie, Z. Qiu, et al., "Frequency modulated radar waveform based on sampled chaotic series", Chinese Journal of Electronics, Vol.22, No.2, pp.426-432, 2013.
    P. Zhen, G. Zhao, L. Min, et al., "Novel hash function based on coupled chaotic map lattices", Chinese Journal of Electronics, Vol.23, No.4, pp.836-841, 2014.
    J. Huang, J. Feng and S. Lyu, "Blind source separation of chaotic signals in wireless sensor networks", Acta Physica Sinica, Vol.63, No.5, pp.050502-1-050502-8, 2014. (in Chinese)
    S. Lyu and J. Feng, "A phase space denoising method for chaotic maps", Acta Physica Sinica, Vol.62, No.23, pp.230503-1-23053- 8, 2013. (in Chinese)
    S. Lyu, Z. Wang, Z. Hu, et al., "Gradient method for blind chaotic signal separation based on proliferation exponent", Chinese Physics B, Vol.23, No.1, pp.010506-1-010506-6, 2014.
    H. Chen, J. Feng and Y. Fang, "Blind extraction of chaotic signals by using the fast independent component analysis algorithm", Chinese Physics Letters, Vol.25, No.2, pp.405-408, 2008.
    B.Wang andW. Zheng, "Blind extraction of chaotic signal from an instantaneous linear mixture", IEEE Transactions on Circuits and Systems II: Express Briefs, Vol.53, No.2, pp.143-147, 2006.
    P. Arena, A. Buscarino, L. Fortuna, et al., "Separation and synchronization of piecewise linear chaotic systems", Physical Review E, Vol.74, No.2, pp.6212-1-6212-11, 2006.
    W. Hu and Z. Liu, "Partially blind source separation of continuous chaotic signals from linear mixture", IET Signal Processing, Vol.2, No.4, pp.424-430, 2008.
    Z. Xie and J. Feng, "Blind source separation of continuoustime chaotic signals based on fast random search algorithm", IEEE Transactions on Circuits and Systems II: Express Briefs, Vol.57, No.6, pp.461-465, 2010.
    W. Tung, J. Gao, J. Hu, et al., "Detecting chaos in heavy-noise environments", Physical Review E, Vol.83, No.4, pp.046210-1- 046210-9, 2011.
    A. Hyvarinen, J. Karhunen and E. Oja, Independent Component Analysis, John Wiley & Sons, New York, USA, pp.147- 237, 2001.
    A. Barros and A. Cichocki, "Extraction of specific signals with temporal structure", Neural Computing, Vol.13, pp.1995-2003, 2001.
    W. Liu, D. Mandic and A. Cichocki, "Blind source extraction based on a linear predictor", IET Signal Processing, Vol.1, No.1, pp.29-34, 2007.
    M. Sano and Y. Sawada, "Measurement of the lyapunov spectrum from a chaotic time series", Physical Review Letters, Vol.55, No.10, pp.1082-1085, 1985.
    M. Rosenstein, J. Collins and C.D. Luca, "A practical method for calculating largest lyapunov exponents from small data sets", Physica D, Vol.65, No.1, pp.117-134, 1993.
    G. Gottwald and I. Melbourne, "Testing for chaos in deterministic systems with noise", Physica D, Vol.212, No.1, pp.100-110, 2005.
    K.E. Parsopoulos and M.N. Vrahatis, "Recent approaches to global optimization problems through particle swarm optimization", Natural Computing, Vol.1, No.2-3, pp.235-306, 2002.
    M. Dorigo and T. St¨utzle, Ant Colony Optimization, MIT Press, London, UK, pp.121-150, 2004.
    D. Karaboga, C. Ozturk, N. Karaboga, et al., "Artificial bee colony programming for symbolic regression", Information Science, Vol.209, pp.1-15, 2012.
    A. Christophe, D. Nando, D. Arnaud, et al., "An introduction to mcmc for machine learning", Machine Learning, Vol.50, No.1-2, pp.5-43, 2003.
    M.K. Pitt and N. Shephard, "Filtering via simulation: auxiliary particle filters", Journal of the American Statistical Association, Vol.94, No.446, pp.590-591, 1999.
    W.K. Hastings, "Monte carlo sampling methods using markov chains and their applications", Biometrika, Vol.57, No.1, pp.97- 109, 1970.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (417) PDF downloads(622) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint