Citation: | HUANG Yufang, XIAO Jianhua, JIANG Keqin, et al., “Parallel Solution for Maximum Independent Set Problem by Programmable Tile Assembly,” Chinese Journal of Electronics, vol. 25, no. 2, pp. 203-208, 2016, doi: 10.1049/cje.2016.03.002 |
L. Pan, X. Zeng and X. Zhang, "Time-free spiking neural P systems", Neural Computation, Vol.23, No.5, pp.1320-1342, 2011.
|
T. Song, L. Pan and G. P?un, "Asynchronous spiking neural P systems with local synchronization", Information Sciences, Vol.219, pp.197-207, 2013.
|
X. Zhang, X. Zeng and L. Pan, "On string languages generated by spiking neural P systems with exhaustive use of rules", Natural Computing, Vol.7, No.4, pp.535-549, 2008.
|
X. Zhang, X. Zeng and L. Pan, "On languages generated by asynchronous spiking neural P systems", Theoretical Computer Science, Vol.410, No.26, pp.2478-2488, 2009.
|
L. Pan and X. Zeng, "Small universal spiking neural P systems working in exhaustive mode", IEEE Transactions on Nanobioscience, Vol.10, No.2, pp.99-105, 2011.
|
L. Pan and M.J. Pérez-Jiménez, "Computational complexity of Tissue-like P systems", Journal of Complexity, Vol.26, No.3, pp. 296-315, 2010.
|
L. Pan, G. P?un and M.J. Pérez-Jiménez, "Spiking neural P systems with neuron division and budding", Science China Information Sciences, Vol.54, No.8, pp.1596-1607, 2011.
|
C. Dwyer and A. Lebeck, Introduction to DNA Self-assembled Computer Design, Artech House, INC, 2008.
|
E. Winfree, "Algorithmic self-assembly of DNA", Ph.D. thesis, California Institute of Technology, 1998.
|
H. Wang, "Dominoes and the AEA case of the decision problem", Proc. Symp. Math. Theory of Automata, Polytechnic Press, New York, pp.23-55, 1963.
|
N. Kallenbach, R. Ma and N. Seeman, "An immobile nucleic acid junction constructed from oligonucleotides", Nature, Vol.305, No. 5937, pp.829-831, 1983.
|
Y. Brun, "Nondeterministic polynomial time factoring in the tile assembly model", Theoretical Computer Science, Vol.395, No.1, pp.3-23, 2008.
|
Y. Brun, "Solving NP-complete problems in the tile assembly model", Theoretical Computer Science, Vol.395, No.1, pp.31-46, 2008.
|
Y. Brun, "Solving satisfiability in the tile assembly model with a constant-size tile set", Journal of Algorithms, Vol.63, No.4, pp.151-166, 2008.
|
M. Lagoudakis and T. LaBean, "2D DNA Self-assembly for satisfiability", DIMACS Series in DISCRETE Mathematics and Theoretical Computer Science, pp.139-152, 2000.
|
N. Jonoska and G. McColm, A Computational Model for Self-assembling Flexible Tiles, Berlin Heidelberg, Germany: Springer-Verlag, pp.142-156, 2005.
|
Y. Huang, J. Xu and Z. Cheng, "Integer factorization based on the tile assembly model", Journal of Computational and Theoretical Nanoscience, Vol.8, No.1, pp.105-116, 2011.
|
Y. Huang, J. Xu and Z. Cheng, "Algorithmic tile assembly for solution of the maximum clique problem", Journal of Computational and Theoretical Nanoscience, Vol.7, No.8, pp.1375-1385, 2010.
|
Z. Cheng, "Arithmetic computation of multiplicative inversion and division in GF(2n) using self-assembly of DNA tiles", Journal of Computational and Theoretical Nanoscience, Vol.9, No.3, pp.336-346, 2012.
|
Z. Cheng, "Nondeterministic algorithm for breaking Diffie-Hellman key exchange using self-assembly of DNA tiles", International Journal of Computers Communication and Control, Vol.7, No.4, pp.616-630, 2012.
|