ZHONG Yu, WU Xiaoyan, HUANG Shucai, LI Chengjing, WU Jianfeng. Optimality Analysis of Sensor-Target Geometries for Bearing-Only Passive Localization in Three Dimensional Space[J]. Chinese Journal of Electronics, 2016, 25(2): 391-396. DOI: 10.1049/cje.2016.03.029
Citation: ZHONG Yu, WU Xiaoyan, HUANG Shucai, LI Chengjing, WU Jianfeng. Optimality Analysis of Sensor-Target Geometries for Bearing-Only Passive Localization in Three Dimensional Space[J]. Chinese Journal of Electronics, 2016, 25(2): 391-396. DOI: 10.1049/cje.2016.03.029

Optimality Analysis of Sensor-Target Geometries for Bearing-Only Passive Localization in Three Dimensional Space

More Information
  • Received Date: December 17, 2013
  • Revised Date: March 07, 2015
  • Published Date: March 09, 2016
  • Optimality analysis of sensor to target observation geometry for bearing-only passive localization is of practical significance in engineering and military applications and this paper generalized predecessors' researches in two-dimensions into three dimensional space. Based on the principles of Cramer-Rao lower bound (CRLB), Fisher information matrix (FIM) and the determinant of FIM derived by Cauchy-Binet formula, this paper configured the optimal observation geometry resulted from maximizing the determinant of FIM. Optimal observation geometry theorems and corresponding propositions were proved for N≥2 sensors in three dimensions. One conjecture was proposed, i.e., when each range of N(N≥4) sensors to the single target is identical, configuring the optimal geometry is equivalent to distributing N points uniformly on a unit sphere, which is one of the worldwide difficult problem. Studies in this paper can provide helpful reference for passive sensor deployment, route planning of detection platform and so on.
  • Z.K. Sun, F.C. Guo, D.W. Feng, et al., Passive Location and Tracking Technology by Single Observer, National Defense Industry Press, Beijing, China, 2008. (in Chinese)
    S.C. Nardone, A.G. Lindgren and K.F. Gong, "Fundamental properties and performance of conventional bearings-only target motion analysis", IEEE Transactions on Automatic and Control, Vol.29, No.9, pp.775-787, 1984.
    S.E. Hammel and V.J. Aidala, "Observability requirements for three-dimensional tracking via angle measurements", IEEE Transactions on Aerospace and Electronic Systems, Vol.21, No.2, pp.200-207, 1985.
    M. Ben Ghalia and A.T. Alouani, "Observability requirements for passive target tracking", Proc. of Twenty-Fifth Southeastern Symposium on System Theory, Tuscaloosa, Alabama, USA, pp.253-257, 1990.
    C. Jauffret, "Observability and fisher information matrix in nonlinear regression", IEEE Transactions on Aerospace and Electronic Systems, Vol.43, No.2, pp.756-759, 2007.
    J.E. Le Cadre and C. Jauffret, "Discrete-time observability and estimability analysis for bearings-only target motion analysis", IEEE Transactions on Aerospace and Electronic Systems, Vol.33, No.1, pp.178-201, 1997.
    E. Castillo, A.J. Conejo, R.E. Pruneda, et al., "Observability analysis in state estimation: A unified numerical approach", IEEE Transactions on Power Systems, Vol.21, No.2, pp.877-886, 2006.
    S.C. Stubberud, K.A. Kramer and J.A. Geremia, "Analysis of the effects of bearings-only sensors on the performance of the neural extended Kalman filter tracking system", Proc. of IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA), Istanbul, Turkey, pp.54-59. 2008.
    Z. Xu, C.W. Qu, C.H. Wang, et al., "Research on a passive localization algorithm based on minimizing the generalized Rayleigh Quotient", Acta Electronica Sinica, Vol.40, No.12, pp.2446-2450, 2012. (in Chinese)
    Y. Oshman and P. Davidson, "Optimization of observer trajectories for bearings-only target", IEEE Transactions on Localization Aerospace and Electronic Systems, Vol.35, No.3, pp.892-902, 1999.
    I. Kadar, "Optimum geometry selection for sensor fusion", Proc.of SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition II, Orlando, Florida, USA, pp.96-107, 1998.
    A.N. Bishop, B. Fidan and B.D.O. Anderson, et al., "Optimality analysis of sensor-target geometries in passive localization: Part 1-bearing-only localization", Proc. of 3rd International Conference on Intelligent Sensors, Sensor Networks and Information( ISSNIP), Melbourne, Australia, pp.7-12, 2007.
    A.N. Bishop, B. Fidan and B.D.O. Anderson, et al., "Optimality analysis of sensor-target geometries in passive localization: Part 2-time-of-arrival based localization", Proc. of 3rd International Conference on Intelligent Sensors, Sensor Networks and Information (ISSNIP), Melbourne, Australia, pp.13-18, 2007.
    Y. Zhao, "Study on target tracking algorithm of LEO satellite constellation", Ph.D.Thesis, National University of Defense Technology, Changsha, China, 2011. (in Chinese)
    R.X. Wang, Mathematical Statics, Xi'an Jiaotong University Press, Xi'an, China, 1986. (in Chinese)
    C.Z. Han, H.Y. Zhu and Z.S. Duan, et al., Multi-source Information Fusion, Tsinghua University Press, Beijing, China, 2010.
    M.S. Yao, Higher Algebra, Fudan University Press, Shanghai, China, 2003.
    B.L. Chen, Theory and Algorithm of Optimization, Tsinghua University Press, Beijing, China, 2005. (in Chinese)
    R. Alexander, "On the sum of distances between n points on a sphere", Acta Mathematica Academiae Scientiarum Hungaricae, Vol.23, No.3-4, pp.443-448, 1972.
    A.B.J. Kuijlaars, E.B. Saff and X. Sunc, "On separation of minimal Riesz energy points on spheres in Euclidean spaces", Journal of Computational and Applied Mathematics, Vol.199, No.1, pp.172-180, 2007.
    X.W. Hou and J.W. Shao, "Spherical distribution of 5 points with maximal distance sum", Discrete and Computational Geometry, Vol.46, No.1, pp.156-174, 2011.
    C.L. del Arco-Calderón, P.I. Viñuela and J.C.H. Castro, "Distribuci ón de cargas en una esfera mediante estrategias evolutivas", IEEE Latin America Transactions, Vol.2, No.2, pp.149-155, 2002. (in Spanish)
    E.B. Saff and A.B.J. Kuijlaars, "Distributing many points on a sphere", Mathematical Intelligencer, Vol.19, No.1, pp.5-11, 1997.
  • Cited by

    Periodical cited type(20)

    1. Chen, Z., Fang, Y., Zhang, R. et al. Layout of Detection Array Based on Multi-Strategy Fusion Improved Adaptive Mayfly Algorithm in Bearing-Only Sensor Network. Sensors, 2024, 24(8): 2415. DOI:10.3390/s24082415
    2. Zhao, Z., Xu, C. Dual-UAVs Collaborative Target Localization and Configuration Optimization. 2024. DOI:10.1109/ACSAT63853.2024.10823872
    3. Wang, C., Fu, W., Zhang, T. et al. A Space Vector-Based Long-Range AOA Localization Algorithm with Reference Points. International Journal of Aerospace Engineering, 2024. DOI:10.1155/2024/2914212
    4. Wang, S., Li, Y., Qi, G. et al. Optimal Geometry and Motion Coordination for Multisensor Target Tracking with Bearings-Only Measurements. Sensors, 2023, 23(14): 6408. DOI:10.3390/s23146408
    5. Ma, G., Huang, Z., Wang, M. et al. Performance Analysis and Sensor-Target Geometry Optimization for TOA and TDOA-Based Hybrid Source Localization Method. Applied Sciences (Switzerland), 2022, 12(24): 12977. DOI:10.3390/app122412977
    6. Wang, C., Fu, W., Zhang, T. et al. An AOA Optimal Positioning Method Incorporating Station Error and Sensor Deployment. Aerospace, 2022, 9(12): 766. DOI:10.3390/aerospace9120766
    7. Sun, S., Liu, Y., Guo, S. et al. Observation-Driven Multiple UAV Coordinated Standoff Target Tracking Based on Model Predictive Control. Tsinghua Science and Technology, 2022, 27(6): 948-963. DOI:10.26599/TST.2021.9010033
    8. Shi, H.-R., Lu, F.-X., Wang, H.-Y. et al. Cooperative control and collision avoidance for two UAVs based on optimization of observation | [基于观测优化的双机协同控制与避障]. Kongzhi yu Juece/Control and Decision, 2022, 37(3): 593-604. DOI:10.13195/j.kzyjc.2020.1168
    9. Shi, H.-R., Lu, F.-X., Wu, L. et al. Trajectory Optimization of Multi-UAVs for Marine Target Tracking during Approaching Stage. Genetics Research, 2022. DOI:10.1155/2022/5472105
    10. Still, L., Oispuu, M., Koch, W. Accuracy Study on Target Localization Using Acoustic Bearing Measurements Including Urban Reflections. 2022. DOI:10.23919/FUSION49751.2022.9841316
    11. Ma, Z., Kirubarajan, T., Li, Y. Finite-time encirclement rotating tracking for surface formation targets with bearing-only measurements. Nonlinear Dynamics, 2021, 105(4): 3323-3339. DOI:10.1007/s11071-021-06818-0
    12. Still, L., Oispuu, M., Koch, W. Optimal Sensor Placement for Shooter Localization Using a Genetic Algorithm. 2021.
    13. Still, L., Oispuu, M., Koch, W. Optimal Sensor Placement for Shooter Localization within a Surveillance Area. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2021. DOI:10.1109/MFI52462.2021.9591199
    14. Wang, D., Huang, D., Xu, C. An improved method for Two-UAV trajectory planning for cooperative target locating based on airborne visual tracking platform. IEICE Transactions on Information and Systems, 2021, E104D(7): 1049-1053. DOI:10.1587/transinf.2020EDL8139
    15. Lu, Y., Zhou, Z. Observation station track optimization of airborne external transmitter location system | [空基外辐射源定位系统的观测站航迹优化]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2020, 42(12): 2708-2715. DOI:10.3969/j.issn.1001-506X.2020.12.06
    16. Haoran, S., Faxing, L., Hangyu, W. et al. Optimal observation configuration of UAVs based on angle and range measurements and cooperative target tracking in three-dimensional space. Journal of Systems Engineering and Electronics, 2020, 31(5): 996-1008. DOI:10.23919/JSEE.2020.000074
    17. Zhang, H., Xie, W. Constrained Unscented Kalman Filtering for Bearings-Only Maneuvering Target Tracking. Chinese Journal of Electronics, 2020, 29(3): 501-507. DOI:10.1049/cje.2020.02.006
    18. Raju, R.G., Kashyap, S.K. 3D localisation of target using elevation angle algorithm with the use of ground radars. Defence Science Journal, 2020, 70(3): 260-271. DOI:10.14429/dsj.70.14277
    19. Wang, J., Qin, Z., Gao, F. et al. An approximate maximum likelihood algorithm for target localization in multistatic passive radar. Chinese Journal of Electronics, 2019, 28(1): 195-201. DOI:10.1049/cje.2018.02.018
    20. Hong, J., Kim, Y., Bang, H. Cooperative circular pattern target tracking using navigation function. Aerospace Science and Technology, 2018. DOI:10.1016/j.ast.2018.02.011

    Other cited types(0)

Catalog

    Article Metrics

    Article views (561) PDF downloads (705) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return