Citation: | ZHONG Yu, WU Xiaoyan, HUANG Shucai, LI Chengjing, WU Jianfeng. Optimality Analysis of Sensor-Target Geometries for Bearing-Only Passive Localization in Three Dimensional Space[J]. Chinese Journal of Electronics, 2016, 25(2): 391-396. DOI: 10.1049/cje.2016.03.029 |
Z.K. Sun, F.C. Guo, D.W. Feng, et al., Passive Location and Tracking Technology by Single Observer, National Defense Industry Press, Beijing, China, 2008. (in Chinese)
|
S.C. Nardone, A.G. Lindgren and K.F. Gong, "Fundamental properties and performance of conventional bearings-only target motion analysis", IEEE Transactions on Automatic and Control, Vol.29, No.9, pp.775-787, 1984.
|
S.E. Hammel and V.J. Aidala, "Observability requirements for three-dimensional tracking via angle measurements", IEEE Transactions on Aerospace and Electronic Systems, Vol.21, No.2, pp.200-207, 1985.
|
M. Ben Ghalia and A.T. Alouani, "Observability requirements for passive target tracking", Proc. of Twenty-Fifth Southeastern Symposium on System Theory, Tuscaloosa, Alabama, USA, pp.253-257, 1990.
|
C. Jauffret, "Observability and fisher information matrix in nonlinear regression", IEEE Transactions on Aerospace and Electronic Systems, Vol.43, No.2, pp.756-759, 2007.
|
J.E. Le Cadre and C. Jauffret, "Discrete-time observability and estimability analysis for bearings-only target motion analysis", IEEE Transactions on Aerospace and Electronic Systems, Vol.33, No.1, pp.178-201, 1997.
|
E. Castillo, A.J. Conejo, R.E. Pruneda, et al., "Observability analysis in state estimation: A unified numerical approach", IEEE Transactions on Power Systems, Vol.21, No.2, pp.877-886, 2006.
|
S.C. Stubberud, K.A. Kramer and J.A. Geremia, "Analysis of the effects of bearings-only sensors on the performance of the neural extended Kalman filter tracking system", Proc. of IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA), Istanbul, Turkey, pp.54-59. 2008.
|
Z. Xu, C.W. Qu, C.H. Wang, et al., "Research on a passive localization algorithm based on minimizing the generalized Rayleigh Quotient", Acta Electronica Sinica, Vol.40, No.12, pp.2446-2450, 2012. (in Chinese)
|
Y. Oshman and P. Davidson, "Optimization of observer trajectories for bearings-only target", IEEE Transactions on Localization Aerospace and Electronic Systems, Vol.35, No.3, pp.892-902, 1999.
|
I. Kadar, "Optimum geometry selection for sensor fusion", Proc.of SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition II, Orlando, Florida, USA, pp.96-107, 1998.
|
A.N. Bishop, B. Fidan and B.D.O. Anderson, et al., "Optimality analysis of sensor-target geometries in passive localization: Part 1-bearing-only localization", Proc. of 3rd International Conference on Intelligent Sensors, Sensor Networks and Information( ISSNIP), Melbourne, Australia, pp.7-12, 2007.
|
A.N. Bishop, B. Fidan and B.D.O. Anderson, et al., "Optimality analysis of sensor-target geometries in passive localization: Part 2-time-of-arrival based localization", Proc. of 3rd International Conference on Intelligent Sensors, Sensor Networks and Information (ISSNIP), Melbourne, Australia, pp.13-18, 2007.
|
Y. Zhao, "Study on target tracking algorithm of LEO satellite constellation", Ph.D.Thesis, National University of Defense Technology, Changsha, China, 2011. (in Chinese)
|
R.X. Wang, Mathematical Statics, Xi'an Jiaotong University Press, Xi'an, China, 1986. (in Chinese)
|
C.Z. Han, H.Y. Zhu and Z.S. Duan, et al., Multi-source Information Fusion, Tsinghua University Press, Beijing, China, 2010.
|
M.S. Yao, Higher Algebra, Fudan University Press, Shanghai, China, 2003.
|
B.L. Chen, Theory and Algorithm of Optimization, Tsinghua University Press, Beijing, China, 2005. (in Chinese)
|
R. Alexander, "On the sum of distances between n points on a sphere", Acta Mathematica Academiae Scientiarum Hungaricae, Vol.23, No.3-4, pp.443-448, 1972.
|
A.B.J. Kuijlaars, E.B. Saff and X. Sunc, "On separation of minimal Riesz energy points on spheres in Euclidean spaces", Journal of Computational and Applied Mathematics, Vol.199, No.1, pp.172-180, 2007.
|
X.W. Hou and J.W. Shao, "Spherical distribution of 5 points with maximal distance sum", Discrete and Computational Geometry, Vol.46, No.1, pp.156-174, 2011.
|
C.L. del Arco-Calderón, P.I. Viñuela and J.C.H. Castro, "Distribuci ón de cargas en una esfera mediante estrategias evolutivas", IEEE Latin America Transactions, Vol.2, No.2, pp.149-155, 2002. (in Spanish)
|
E.B. Saff and A.B.J. Kuijlaars, "Distributing many points on a sphere", Mathematical Intelligencer, Vol.19, No.1, pp.5-11, 1997.
|
1. | Chen, Z., Fang, Y., Zhang, R. et al. Layout of Detection Array Based on Multi-Strategy Fusion Improved Adaptive Mayfly Algorithm in Bearing-Only Sensor Network. Sensors, 2024, 24(8): 2415. DOI:10.3390/s24082415 | |
2. | Zhao, Z., Xu, C. Dual-UAVs Collaborative Target Localization and Configuration Optimization. 2024. DOI:10.1109/ACSAT63853.2024.10823872 | |
3. | Wang, C., Fu, W., Zhang, T. et al. A Space Vector-Based Long-Range AOA Localization Algorithm with Reference Points. International Journal of Aerospace Engineering, 2024. DOI:10.1155/2024/2914212 | |
4. | Wang, S., Li, Y., Qi, G. et al. Optimal Geometry and Motion Coordination for Multisensor Target Tracking with Bearings-Only Measurements. Sensors, 2023, 23(14): 6408. DOI:10.3390/s23146408 | |
5. | Ma, G., Huang, Z., Wang, M. et al. Performance Analysis and Sensor-Target Geometry Optimization for TOA and TDOA-Based Hybrid Source Localization Method. Applied Sciences (Switzerland), 2022, 12(24): 12977. DOI:10.3390/app122412977 | |
6. | Wang, C., Fu, W., Zhang, T. et al. An AOA Optimal Positioning Method Incorporating Station Error and Sensor Deployment. Aerospace, 2022, 9(12): 766. DOI:10.3390/aerospace9120766 | |
7. | Sun, S., Liu, Y., Guo, S. et al. Observation-Driven Multiple UAV Coordinated Standoff Target Tracking Based on Model Predictive Control. Tsinghua Science and Technology, 2022, 27(6): 948-963. DOI:10.26599/TST.2021.9010033 | |
8. | Shi, H.-R., Lu, F.-X., Wang, H.-Y. et al. Cooperative control and collision avoidance for two UAVs based on optimization of observation | [基于观测优化的双机协同控制与避障]. Kongzhi yu Juece/Control and Decision, 2022, 37(3): 593-604. DOI:10.13195/j.kzyjc.2020.1168 | |
9. | Shi, H.-R., Lu, F.-X., Wu, L. et al. Trajectory Optimization of Multi-UAVs for Marine Target Tracking during Approaching Stage. Genetics Research, 2022. DOI:10.1155/2022/5472105 | |
10. | Still, L., Oispuu, M., Koch, W. Accuracy Study on Target Localization Using Acoustic Bearing Measurements Including Urban Reflections. 2022. DOI:10.23919/FUSION49751.2022.9841316 | |
11. | Ma, Z., Kirubarajan, T., Li, Y. Finite-time encirclement rotating tracking for surface formation targets with bearing-only measurements. Nonlinear Dynamics, 2021, 105(4): 3323-3339. DOI:10.1007/s11071-021-06818-0 | |
12. |
Still, L., Oispuu, M., Koch, W. Optimal Sensor Placement for Shooter Localization Using a Genetic Algorithm. 2021.
![]() |
|
13. | Still, L., Oispuu, M., Koch, W. Optimal Sensor Placement for Shooter Localization within a Surveillance Area. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2021. DOI:10.1109/MFI52462.2021.9591199 | |
14. | Wang, D., Huang, D., Xu, C. An improved method for Two-UAV trajectory planning for cooperative target locating based on airborne visual tracking platform. IEICE Transactions on Information and Systems, 2021, E104D(7): 1049-1053. DOI:10.1587/transinf.2020EDL8139 | |
15. | Lu, Y., Zhou, Z. Observation station track optimization of airborne external transmitter location system | [空基外辐射源定位系统的观测站航迹优化]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2020, 42(12): 2708-2715. DOI:10.3969/j.issn.1001-506X.2020.12.06 | |
16. | Haoran, S., Faxing, L., Hangyu, W. et al. Optimal observation configuration of UAVs based on angle and range measurements and cooperative target tracking in three-dimensional space. Journal of Systems Engineering and Electronics, 2020, 31(5): 996-1008. DOI:10.23919/JSEE.2020.000074 | |
17. | Zhang, H., Xie, W. Constrained Unscented Kalman Filtering for Bearings-Only Maneuvering Target Tracking. Chinese Journal of Electronics, 2020, 29(3): 501-507. DOI:10.1049/cje.2020.02.006 | |
18. | Raju, R.G., Kashyap, S.K. 3D localisation of target using elevation angle algorithm with the use of ground radars. Defence Science Journal, 2020, 70(3): 260-271. DOI:10.14429/dsj.70.14277 | |
19. | Wang, J., Qin, Z., Gao, F. et al. An approximate maximum likelihood algorithm for target localization in multistatic passive radar. Chinese Journal of Electronics, 2019, 28(1): 195-201. DOI:10.1049/cje.2018.02.018 | |
20. | Hong, J., Kim, Y., Bang, H. Cooperative circular pattern target tracking using navigation function. Aerospace Science and Technology, 2018. DOI:10.1016/j.ast.2018.02.011 |