YANG Yongjian, FAN Xiaoguang, ZHUO Zhenfu, et al., “Amended Kalman Filter for Maneuvering Target Tracking,” Chinese Journal of Electronics, vol. 25, no. 6, pp. 1166-1171, 2016, doi: 10.1049/cje.2016.08.036
Citation: YANG Yongjian, FAN Xiaoguang, ZHUO Zhenfu, et al., “Amended Kalman Filter for Maneuvering Target Tracking,” Chinese Journal of Electronics, vol. 25, no. 6, pp. 1166-1171, 2016, doi: 10.1049/cje.2016.08.036

Amended Kalman Filter for Maneuvering Target Tracking

doi: 10.1049/cje.2016.08.036
Funds:  This work is supported by the Aeronautical Science Fund of Shaanxi province of China (No.20145596025).
  • Received Date: 2015-11-25
  • Rev Recd Date: 2016-03-11
  • Publish Date: 2016-11-10
  • The conventional Kalman filter (KF) which uses the current measurement to estimate the current state is a posterior estimation. KF is identified as the optimal estimation in linear models with Gaussian noise. However, the performance of KF with incomplete information may be degraded or diverged. In order to improve the performance of KF, an Amended KF (AKF) is proposed by using more posterior measurements. The principle, derivation and recursive process of AKF are presented. The differences among Kalman smoother, adaptive fading method and AKF are analyzed. The simulation results of target tracking with different covariance of motion model indicate the high precision and robustness of AKF.
  • loading
  • H. Shu, E.P. Simon and L. Ros, "Third-order Kalman filter: Tuning and steady-state performance", IEEE Signal Process. Lett., Vol.20, No.11, pp.1082-1085, 2013.
    W. Wu, J. Jiang, X. Feng and X. Qing, "A sequential converted measurement Kalman filter with Doppler measurements in ECEF coordinate system", Chinese Journal of Electronics, Vol.25, No.1, pp.139-145, 2016.
    K.H. Kim, J.G. Lee, C.G. Park and J.G. Lee, "The stability Analysis of the adaptive fading extended Kalman filter using the innovation covariance", International Journal of Control Automatic and systems, Vol.7, No.1, pp.49-56, 2009.
    K. Mehrotra and P.R. Mahapatra, "A jerk model for tracking highly maneuvering targets", IEEE Trans. Aerosp. Electron. Syst., Vol.33, No.4, pp.1094-1105, 1997.
    B. Friedland, "Treatment of bias in recursive filtering", IEEE Trans. Automat. Contr., Vol.14, No.4, pp.359-367, 1969.
    T.S. Lee, "Theory and application of adaptive fading memory Kalman filters", IEEE Trans. Circ. Syst., Vol.35, No.4, pp.474-477, 1988.
    J.Y. Keller and M. Darouach, "Optimal two-stage Kalman filter in the presence of random bias", Automatica, Vol.33, No.9, pp.1745-1748, 1997.
    M.N. Ignagni, "Separate-bias Kalman estimator with bias state noise", IEEE Trans. on Automat. Contr., Vol.35, No.3, pp.338-341, 1990.
    A.T. Alouani, P. Xia, T.R. Rice and W.D. Blair, "On the optimality of two-stage state estimation in the presence of random bias", IEEE Trans. Automat. Contr., Vol.38, No.8, pp.1279-1282, 1993.
    M.N. Ignagni, "Optimal and suboptimal separate-bias Kalman estimator for a stochastic bias", IEEE Trans. Automat. Contr., Vol.45, No.3, pp.547-551, 2000.
    Y.R. Geng and J.L. Wang, "Adaptive estimation of multiple fading factors in Kalman filter for navigation applications", GPS solute, Vol.12, No.4, pp.273-279, 2008.
    J. Zhang, Z.H. Jin and W.F. Tian, "A suboptimal Kalman filter with fading factors for DGPS/MEMS-IMU/Magnetic compass integrated navigation", Proc. of IEEE Intelligent Transportation Systems, pp.1229-1234, 2003.
    K. Xiao, S.J. Fang and Y.J. Pang, "Strong tracking adaptive Kalman filters for underwater vehicle dead reckoning", Journal of Marine Science and Application, Vol.6, No.2, pp.19-24, 2007.
    H.E. Rauch, F. Tung and C.T. Striebel, "Maximum likelihood estimates of linear dynamic systems", AIAA Journal, Vol.3, No.8, pp.1445-1450, 1965.
    R.G. Gibbs, "New Kalman filter and smoother consistency tests", Automatica, Vol.49, No.10, pp.3141-3144, 2013.
    M.L. Psiaki, "Kalman filtering and smoothing to estimate realvalued states and interger constants", Journal of Guidance, Control and Dynamics, Vol.33, No.5, pp.1404-1417, 2010.
    Q.J. Xia, M. Rao, Y.Q. Ying and et al., "Adaptive fading Kalman filter with an application", Automatica, Vol.30, No.12, pp.1333-1338, 1994.
    W.D. Blair and Y. Bar-Shalom, "Tracking maneuvering targets with multiple sensors: Does more data always mean better estimates?", IEEE Trans. Aeros. Electron. Syst., Vol.32, No.1, pp.450-456, 1996.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (408) PDF downloads(520) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint