MENG Fanchen, WANG Shan, ZHU Bocheng. Research of Fast Satellite Selection Algorithm for Multi-constellation[J]. Chinese Journal of Electronics, 2016, 25(6): 1172-1178. DOI: 10.1049/cje.2016.10.009
Citation: MENG Fanchen, WANG Shan, ZHU Bocheng. Research of Fast Satellite Selection Algorithm for Multi-constellation[J]. Chinese Journal of Electronics, 2016, 25(6): 1172-1178. DOI: 10.1049/cje.2016.10.009

Research of Fast Satellite Selection Algorithm for Multi-constellation

Funds: This work is supported by the National Natural Science Foundation of China (No.11076001).
More Information
  • Received Date: September 02, 2014
  • Revised Date: June 30, 2015
  • Published Date: November 09, 2016
  • We propose a fast satellite selection algorithm for multi-constellation, which is based on both Newton's identities for Geometric dilution of precision (GDOP) fast computation and optimal satellite geometric distribution for less cycle participation. An effective closed-form formula is proposed for GDOP approximation, avoiding conventional matrix inversion and complexity. We reduce computational cycles with auxiliary optimal satellite geometric distribution, which improves the efficiency of real-time positioning under the combined action of both. Simulation results indicate that we can save more than 44% and 99% computational complexity when selecting 7 satellites from 10 and 30 visible satellites respectively. The GDOP of proposed method is very close to optimal result, better than that of Quasi-Optimal algorithm.
  • R. Li, Y.C. Wang and J. Zhang, "New techniques for multi-mode satellite navigation receiver", Chinese Journal of Electronics, Vol.19, No.2, pp.365-368, 2010.
    R.B. Zhao, R. Li and Z.G. Huang, "A user range accuracy estimation method of the Global navigation satellite system", Chinese Journal of Electronics, Vol.23, No.1, pp.194-198, 2014.
    J. Guo, D.K. Yang and K.V. Ling, "Geometry and accuracy of specular points in GPS-Reflection altimetry", Chinese Journal of Electronics, Vol.21, No.1, pp.91-96, 2012.
    X.X. Li, X.H. Zhang and H. Schuh, "Precise positioning with current multi-constellation Global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou", Nature, Scientific Reports 5, Article number: 8328, 2015.
    N.B. Delgado and F. Nunes, "Satellite selection based on WDOP concept and convex geometry", Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), pp.1-8, 2010.
    M.Y. Zhang and J. Zhang, "A fast satellite selection algorithm beyond four satellites", IEEE Journal Selected Topics in Signal Processing, Vol.3, No.5, pp.740-747, 2009.
    L. Jin, Z.G. Huang, R. Li, et al., "Study on fast satellite selection algorithm for integrated navigation", Acta Electronica Sinica, Vol.37, No.9, pp.1931-1936, 2009. (in Chinese)
    R. Yarlagadda, I. Ali and J. Hershey, "GPS GDOP metric", IEE Proceedings, Radar, Sonar and Navigation, Vol.147, No.5, pp.259-264, 2000.
    J.J. Zhu, "Calculation of geometric dilution of precision", IEEE Trans. Aerospace and Electronic Systems, Vol.28, No.3, pp.893-895, 1992.
    C.H. Wu and Y.W. Ho, "A study on GPS GDOP approximation using support-vector machines", IEEE Trans. Instrumentation and Measurement, Vol.60, No.1, pp.137-145, 2011.
    X. Yang, A.W. Shen and J. Xu, "Artificial neural network based trilogic SVM control in current source rectifier", Chinese Journal of Electronics, Vol.23, No.24, pp.723-728, 2014.
    S.H. Doong, "A closed-form formula for GPS GDOP computation", GPS Solutions, Vol.13, No.3, pp.183-190, 2009.
    L. Jin, Z.G. Huang and Y.L. Ma, "Study on fast satellite selection algorithm for integrated navigation", Acta Electronica Sinica, Vol.37, No.9, pp.1931-1936, 2009. (in Chinese)
    M.M. Wei, J. Wang and J.Q. Li, "A new satellite selection algorithm for real-time application", 2012 International Conference on Systems and Informatics (ICSAI), pp.2567-2570, 2012.
    D. Simon and H. EI-Sherief, "Navigation satellite selection using neural networks", Neurocomputing, Vol.7, No.3, pp.247-258, 1995.
  • Related Articles

    [1]CHEN Jinyin, LIN Xiang, GAO Shangtengda, XIONG Hui, ZHANG Longyuan, LIU Yi, XUAN Qi. A Fast Evolutionary Learning to Optimize CNN[J]. Chinese Journal of Electronics, 2020, 29(6): 1061-1073. DOI: 10.1049/cje.2020.09.007
    [2]WANG Shanhe, HUA Yu, XIANG Yu, HUANG Changjiang, GAO Yuanyuan, ZHAO Xian. Optimal Weighting Method for Reducing Digital Satellite TV Differential Timing Error[J]. Chinese Journal of Electronics, 2020, 29(2): 322-326. DOI: 10.1049/cje.2020.01.010
    [3]GUO Zhaoming, JIANG Yi, BI Shihua. Detection Probability for Moving Ground Target of Normal Distribution Using an Imaging Satellite[J]. Chinese Journal of Electronics, 2018, 27(6): 1309-1315. DOI: 10.1049/cje.2018.08.005
    [4]LIU Jun, WANG Jingjing, LIU Weixin, WANG Qunyang, WANG Mengyuan. A Novel Cooperative Physical Layer Security Scheme for Satellite Downlinks[J]. Chinese Journal of Electronics, 2018, 27(4): 860-865. DOI: 10.1049/cje.2018.05.016
    [5]ZHANG Shangli, ZHANG Lili, QIU Kuanmin, LU Ying, CAI Baigen. Variable Selection in Logistic Regression Model[J]. Chinese Journal of Electronics, 2015, 24(4): 813-817. DOI: 10.1049/cje.2015.10.025
    [6]YUAN Hanning, WANG Shuliang, LI Ying, FAN Jinghua. Feature Selection with Data Field[J]. Chinese Journal of Electronics, 2014, 23(4): 661-665.
    [7]ZHAO Ruibin, LI Rui, HUANG Zhigang, SHAO Bo. A User Range Accuracy Estimation Method of the Global Navigation Satellite System[J]. Chinese Journal of Electronics, 2014, 23(1): 194-198.
    [8]XIE Ning, WANG Hui, LI Xia. Fast Adaptive Equalizer Algorithm with Low Complexity[J]. Chinese Journal of Electronics, 2011, 20(3): 550-552.
    [9]RAO Yuan, WANG Ruchuan. Multi-path QoS Routing Using Genetic Algorithm for LEO Satellite Networks[J]. Chinese Journal of Electronics, 2011, 20(1): 17-20.
    [10]SHANG Yong, QIAO Dan. A Trade off Power Allocation Algorithm over Multibeam Satellite Downlinks[J]. Chinese Journal of Electronics, 2009, 18(1): 137-140.
  • Cited by

    Periodical cited type(16)

    1. Yu, X., Guo, Z., Wu, L. Research on Multi-Source Data Fusion and Satellite Selection Algorithm Optimization in Tightly Coupled GNSS/INS Navigation Systems. Remote Sensing, 2024, 16(15): 2804. DOI:10.3390/rs16152804
    2. Cui, J., Liang, H. Closed-form expression of DOP based on effective computation. Proceedings of SPIE - The International Society for Optical Engineering, 2024. DOI:10.1117/12.3026403
    3. Guo, J., Wang, Y., Xie, X. et al. A fast satellite selection algorithm for positioning in LEO constellation. Advances in Space Research, 2024, 73(1): 271-285. DOI:10.1016/j.asr.2023.10.031
    4. Guo, J., Wang, Y., Sun, C. Signal Occlusion-Resistant Satellite Selection for Global Navigation Applications Using Large-Scale LEO Constellations. Remote Sensing, 2023, 15(20): 4978. DOI:10.3390/rs15204978
    5. Zhao, W., Duan, L., Jian, X. A Satellite Selection Strategy of SURF IA in Airport Intelligent Monitoring. Mathematical Problems in Engineering, 2022. DOI:10.1155/2022/8966814
    6. Guan, X., Chai, H., Xiao, G. et al. A fast satellite selection algorithm for multi-GNSS marine positioning based on improved particle swarm optimisation. Survey Review, 2022, 54(387): 554-565. DOI:10.1080/00396265.2021.1991175
    7. Wang, E., Sun, C., Wang, C. et al. A satellite selection algorithm based on adaptive simulated annealing particle swarm optimization for the BeiDou Navigation Satellite System/Global Positioning System receiver. International Journal of Distributed Sensor Networks, 2021, 17(7) DOI:10.1177/15501477211031748
    8. Wang, W., Xu, Y. REKF RAIM algorithm based on robust MM-estimation | [基于稳健MM估计的REKF RAIM算法]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2021, 43(1): 216-222. DOI:10.3969/j.issn.1001-506X.2021.01.26
    9. Rapoport, L.B., Tormagov, T.A. Relaxation Methods for Navigation Satellites Set Optimization. Automation and Remote Control, 2020, 81(9): 1711-1721. DOI:10.1134/S0005117920090106
    10. Zhao, J., Xu, C., Jian, Y. et al. A Modified Range Consensus Algorithm Based on GA for Receiver Autonomous Integrity Monitoring. Mathematical Problems in Engineering, 2020. DOI:10.1155/2020/8969032
    11. Rapoport, L., Tormagov, T. An Approximate Solution of a GNSS Satellite Selection Problem Using Semidefinite Programming. Communications in Computer and Information Science, 2020. DOI:10.1007/978-3-030-38603-0_11
    12. Yang, L., Gao, J., Li, Z. et al. New satellite selection approach for GPS/BDS/GLONASS kinematic precise point positioning. Applied Sciences (Switzerland), 2019, 9(24): 5280. DOI:10.3390/app9245280
    13. Wu, B., Yang, Q., Mao, X. et al. A Novel Fast Satellite Selection Algorithm for Multi-GNSS Positioning. 2019. DOI:10.1109/CAC48633.2019.8997197
    14. Liu, X., Zhang, S., Zhang, Q. et al. A fast satellite selection algorithm with floating high cut-off elevation angle based on ADOP for instantaneous multi-GNSS single-frequency relative positioning. Advances in Space Research, 2019, 63(3): 1234-1252. DOI:10.1016/j.asr.2018.10.032
    15. Rapoport, L., Tormagov, T. Using of the SDP relaxation method for optimization of the satellites set chosen for positioning. 2018. DOI:10.33012/2018.15994
    16. Pan, W., Pei, T., Liu, Y. BDS / GPS fast satellite selection algorithm. 2017. DOI:10.1109/CAC.2017.8243456

    Other cited types(0)

Catalog

    Article Metrics

    Article views (622) PDF downloads (838) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return