ZHAO Yujing, CHEN Xiongwen, SHI Zhengang, ZHOU Fang, XIANG Shaohua, SONG Kehui. Implementation of One-Way Quantum Computing with a Hybrid Solid-State Quantum System[J]. Chinese Journal of Electronics, 2017, 26(1): 27-34. doi: 10.1049/cje.2016.11.004
Citation: ZHAO Yujing, CHEN Xiongwen, SHI Zhengang, ZHOU Fang, XIANG Shaohua, SONG Kehui. Implementation of One-Way Quantum Computing with a Hybrid Solid-State Quantum System[J]. Chinese Journal of Electronics, 2017, 26(1): 27-34. doi: 10.1049/cje.2016.11.004

Implementation of One-Way Quantum Computing with a Hybrid Solid-State Quantum System

doi: 10.1049/cje.2016.11.004
Funds:  This work is supported by the National Natural Science Foundation of China (No.11174100, No.11574081), Key Science Research Foundation of Education Department of Hunan Province (No.14A114, No.14A096), and Science Research Foundation of Education Department of Hunan Province (No.15C1091).
More Information
  • Corresponding author: SONG Kehui (corresponding author) is a professor of the Department of Physics, Huaihua University, China. His major research interests include the quantum optics and quantum information. (Email:hhkhsong@vip.sina.com)
  • Received Date: 2015-04-09
  • Rev Recd Date: 2015-12-18
  • Publish Date: 2017-01-10
  • We proposed an efficient scheme for implementing the large-scale one-way Quantum computing (QC) with a novel hybrid solid-state quantum system. This system consists of N Nitrogen-vacancy (N-V) centers coupled to N separate Transmission line resonators (TLRs), which are interconnected by a Current-biased Josephson junction (CBJJ) superconducting phase qubit. We showed the way of preparation of N-qubit linear cluster state with N N-V centers, then we demonstrated the way of extending cluster state by connecting two pieces of linear cluster states into two-dimensional cluster state, last, with our designed new structures, we demonstrated the QC basic operations. It means that our scheme may open up promising possibilities for implementing the practical and scalable one-way quantum computers with the hybrid solid-state quantum system. We discussed the experimental feasibility of our system.
  • loading
  • H.J. Briegel and R. Raussendorf, "Persistent entanglement in arrays of interacting particles", Phys. Rev. Lett., Vol.5, No.86, pp.910-913, 2001.
    R. Raussendorf and H.J. Briegel, "A one-way quantum computer", Phys. Rev. Lett., Vol.22, No.86, pp.5188-5191, 2001.
    R. Raussendorf, D.E. Browne and H.J. Briegel, "The one-way quantum computer a non-network model of quantum computation", J. Mod. Opt., Vol.8, No.49, pp.1299-1306, 2002.
    R. Raussendorf, D.E. Browne and H.J. Briegel, "Measurementbased quantum computation with cluster state", Phys. Rev. A., Vol.2, No.68, pp.022312, 2003.
    K. Li and G. Smith, "Quantum de Finetti theorem under fully-one-way adaptive measurements", Phys. Rev. Lett., Vol.16, No.114, pp.160503, 2015.
    M.S. Tame, B.A. Bell, C.D. Franco, et al., "Experimental realization of a one-way quantum computer algorithm solving simons problem", Phys. Rev. Lett., Vol.20, No.113, pp.200501, 2014.
    R.D da Silva and E.F. Galvão, " Compact quantum circuits from one-way quantum computation", Phys. Rev. A., Vol.1, No.11, pp.012319, 2013.
    P. Walther, K.J. Resch, et al., "Experimental one-way quantum computing", Nature, Vol.7030, No.434, pp.169-176, 2005.
    R. Prevedel, P. Walther, F. Tiefenbacher, et al., "High-speed linear optics quantum computing using active feed-forward", Nature, Vol.7123, No.445, pp.65-69, 2007.
    Y. Tokunaga, S. Kuwashiro, T. Yamamoto, et al., "Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing", Phys. Rev. Lett., Vol.21, No.100, pp.210501, 2008.
    W.J. Liu, H.W. Chen, T.H. Ma, et al., "An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication", Chin. Phys. B., Vol.10, No.18, pp.4105, 2009.
    X.L. Zhang, K.L. Gao and M. Feng, "Preparation of cluster states and W states with superconducting quantuminterference-device qubits in cavity QED", Phys. Rev. A., Vol.2, No.74, pp.024303, 2006.
    X.R. Jin, Y.Q. Zhang, S. Zhang and D.Z. Jin, "Generation of multi-atom cluster states via an unconventional geometric phase shift in cavity QED", Phys. Rev. B., Vol.5, No.16, pp.1220, 2007.
    Q. Chen, M. Feng, J.F. Du, W.H. Hai, et al., "Large-scale cluster state generation with nuclear spins in diamonds", Phys. Rev. B., Vol.1, No.20, pp.010308, 2011.
    S.P. Chen, K.H. Song, S.H. Xiang, et al., "Influence from cavity decay on entanglement evolution of three superconducting charge qubits coupled to a cavity", Chin. J. Electron., Vol.1, No.23, pp.157-162, 2014.
    T. Tanamoto, Y.X. Liu, S. Fujita, et al., "Producing cluster states in charge qubits and flux qubits", Phys. Rev. Lett., Vol.23, No.97, pp.230501, 2006.
    J.Q. You, X.B. Wang, T. Tanamoto, et al., "Efficient one-step generation of large cluster states with solid-state circuits", Phys. Rev. A., Vol.5, No.75, pp.052319, 2007.
    G. Chen, Z. Chen, L. Yu, et al., "One-step generation of cluster states in superconducting charge qubits coupled with a nanomechanical resonator", Phys. Rev. A., Vol.2, No.76, pp.024301, 2007.
    Z.Y. Xue and Z.D. Wang, "Simple unconventional geometric scenario of oneway quantum computation with superconducting qubits inside a cavity", Phys. Rev. A., Vol.6, No.75, pp.064303, 2007.
    L. Childress, M.V. Gurudev Dutt, J.M. Taylor, et al., "Coherent dynamics of coupled electron and nuclear spin qubits in diamond", Science, Vol.5797, No.5797, pp.281-285, 2006.
    Y. Yu, S. Han, X. Chu, et al., "Coherent temporal oscillations of macroscopic quantum states in a Josephson junction", Science, Vol.5569, No.296, pp.889-892, 2002.
    J.M. Martinis, S. Nam, J. Aumentado, et al., "Rabi oscillations in a large Josephson-junction qubit", Phys. Rev. Lett., Vol.11, No.89, pp.117901, 2002.
    A. Blais, A. Maassenvanden Brink and A.M. Zagoskin, "Tunable coupling of superconducting qubits", Phys. Rev. Lett., Vol.12, No.90, pp.127901, 2003.
    Y. Hu, Y.F. Xiao, Z.W. Zhou, et al., "Controllable coupling of superconducting transmission-line resonators", Phys. Rev. A., Vol.1, No.75, pp.012314, 2007.
    T.A. Kennedy, J.S. Colton, J.E. Butler, et al., "Long coherence times at 300K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition", Appl. Phys. Lett., Vol.20, No.83, pp.4190-4192, 2003.
    S.D. Barrett and P. Kok, "Efficient high-fidelity quantum computation using matter qubits and linear optics", Phys. Rev. A., Vol.6, No.71, pp.060310, 2005.
    J. Twamley and S.D. Barrett, "Superconducting cavity bus for single nitrogenvacancy defect centers in diamond", Phys. Rev. B., Vol.24, No.81, pp.241202, 2010.
    D. Marcos, M. Wubs, J.M. Taylor, et al., "Coupling nitrogenvacancy centers in diamond to superconducting flux qubits", Phys. Rev. Lett., Vol.21, No.105, pp.210501, 2010.
    Q. Chen, M. Feng, J.F. Du, et al., "Entanglement evolution of two remote and non-identical Jaynes-cummings atoms", J. Phys. B., Vol.1, No.20, pp.010308, 2011.
    W.L. Yang, Z.Q. Yin, Y. Hu, et al., "High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation", Phys. Rev. A., Vol.1, No.84, pp.010301, 2011.
    W.L. Yang, Z.Q. Yin, Q. Chen, et al., "Two-mode squeezing of distant nitrogen-vacancy-center ensembles by manipulating the reservoir", Phys. Rev. A., Vol.2, No.85, pp.022324, 2012.
    Y.J. Zhao, X.M. Fang, F. Zhou, et al., "A scheme for realizing quantum information storage and retrieval from quantum memory based on nitrogenvacancy centers", Phys. Rev. A., Vol.5, No.86, pp.052325, 2012.
    A. Blais, R.S. Huang, A. Wallraff, et al., "Cavity quantum electrodynamics for superconducting electrical circuits:An architecture for quantum computation", Phys. Rev. A., Vol.6, No.69, pp.062320, 2004.
    N.B. Manson, J.P. Harrison, M.J. Sellars, "Nitrogen-vacancy center in diamond:Model of the electronic structure and associated dynamics", Phys. Rev. B., Vol.10, No.74, pp.104303, 2006.
    J. Clarke, A.N. Cleland, M.H. Devoret, et al., "Quantum mechanics of a macroscopic variable:The phase difference of a Josephson junction", Science, Vol.4843, No.239, pp.992-997, 1988.
    A. Sørensen and K. Mølmer, "Quantum computation with ions in thermal motion", Phys. Rev. Lett., Vol.9, No.82, pp.1971, 1999.
    H. Fröhlich, "Theory of the superconducting state. I. The ground state at the absolute zero of temperature", Phys. Rev, Vol.5, No.79, pp.845, 1950.
    P. Neumman, N. Mizuochi, F. Rempp, et al., "Multipartite entanglement among single spins in diamond", Science, Vol.5881, No.320, pp.1326-1329, 2008.
    J. Harrison, M.J. Sellars and N.B. Manson, "Measurement of the optically induced spin polarisation of N-V centres in diamond", Diamond Relat. Mater., Vol.4, No.15, pp.586-588, 2006.
    G. Balasubramanian, I.Y. Chan, R. Kolesov, et al., "Nanoscale imaging magnetometry with diamond spins under ambient conditions", Nature, Vol.7213, No.455, pp.648-651, 2008.
    S.J. Srinivasan, A.J. Hoffman, J.M. Gambetta, et al., "Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram", Phys. Rev. Lett., Vol.8, No.106, pp.083601, 2011.
    J. Majer, J.M. Chow and J.M. Gambetta, "Coupling superconducting qubits via a cavity bus", Phys. Rev., Vol.7161, No.449, pp.443-447, 2007.
    M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge University Press, UK, 1997.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (189) PDF downloads(583) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return