TANG Liming, FANG Zhuang, XIANG Changcheng, CHEN Shiqiang, HUANG Darong. A Variational Model for Staircase Reduction in Image Denoising[J]. Chinese Journal of Electronics, 2017, 26(2): 358-366. doi: 10.1049/cje.2017.01.015
Citation: TANG Liming, FANG Zhuang, XIANG Changcheng, CHEN Shiqiang, HUANG Darong. A Variational Model for Staircase Reduction in Image Denoising[J]. Chinese Journal of Electronics, 2017, 26(2): 358-366. doi: 10.1049/cje.2017.01.015

A Variational Model for Staircase Reduction in Image Denoising

doi: 10.1049/cje.2017.01.015
Funds:  This work is supported by the National Natural Science Foundation of China (No.61561019), the Natural Science Fund of Hubei Province (No.2015CFB262), the National Science and Technology Pillar Program (No.2015BAK27B03), and Doctoral Scientific Fund Project of Hubei University for Nationalities (No.MY2015B001).
  • Received Date: 2014-10-15
  • Rev Recd Date: 2015-04-06
  • Publish Date: 2017-03-10
  • We propose a new variational model to reduce the staircase that often appears in Total variation (TV) based models in image denoising. The model uses BV-seminorm and Besov-seminorm to measure the piecewise constant component and piecewise smooth component of the image, respectively. We discuss the nontrivial property of the proposed model and introduce an alternating iteration algorithm that combines the dual projection algorithm with Wavelet soft thresholding (WST) algorithm to solve the model numerically. The experimental results show that the proposed model is effective for noise removal and staircase reduction, while the contour can be preserved in the denoised images. Furthermore, compared with two classical staircase reduction models, CEP2 and TGV, the proposed model is much faster than these two models.
  • loading
  • C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images", Proc. of 1998 Sixth International Conference on Computer Vision, IEEE, pp.839-846, 1998.
    S.M. Smith and J.M. Brady, "SUSAN-a new approach to low level image processing", International Journal of Computer Vision, Vol.23, No.1, pp.45-78, 1997.
    A. Buades, B. Coll and J.M. Morel, "A review of image denoising algorithms, with a new one", Multiscale Modeling and Simulation, Vol.4, No.2, pp.490-530, 2005.
    S.P. Awate and R.T. Whitaker, "Unsupervised, information-theoretic, adaptive image filtering for image restoration", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.28, No.3, pp.364-376, 2006.
    M. Aharon, M. Elad and A. Bruckstein, "K-SVD:An algorithm for designing overcomplete dictionaries for sparse representation", IEEE Transactions on Signal Processing, Vol.54, No.11, pp.4311-4322, 2006.
    P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.12, No.7, pp.629-639, 1990.
    J. Weickert, Anisotropic Diffusion in Image Processing, B.g.teubner, Stuttgart, Germany, 1998.
    D. Zhao, H.Q. Du and W.B. Mei, "Hybrid weighted-total variation constrained reconstruction for MR image", Chinese Journal of Electronics, Vol.23, No.4, pp.747-752, 2014.
    A. Buades, T.M. Le, J.M. Morel, et al., "Fast cartoon+ texture image filters", IEEE Transactions on Image Processing, Vol.19, No.8, pp.1978-1986, 2010.
    L.I. Rudin, S. Osher and E. Fatemi, "Nonlinear total variation based noise removal algorithms", Physica D:Nonlinear Phenomena, Vol.60, No.1, pp.259-268, 1992.
    Ambrosio L, Fusco N, Pallara D, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, USA, 2000.
    L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1991.
    Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations:the Fifteenth Dean Jacqueline B. Lewis Memorial Lectures, American Mathematical Society, Providence, USA, 2001.
    D. Strong and T. Chan, "Edge-preserving and scale-dependent properties of total variation regularization", Inverse Problems, Vol.19, No.6, pp.165-187, 2003.
    S. Osher, A. Solé and L.Vese, "Image decomposition and restoration using total variation minimization and the H1", Multiscale Modeling and Simulation, Vol.1, No.3, pp.349-370, 2003.
    L.A. Vese and S.J. Osher, "Modeling textures with total variation minimization and oscillating patterns in image processing", Journal of Scientific Computing, Vol.19, No.1-3, pp.553-572, 2003.
    L.M. Tang and D.R. Huang, "Multiscale image restoration and reconstruction in the framework of variation", Acta Electronica Sinica, Vol.41, No.12, pp.2353-2360, 2013. (in Chinese)
    J.F. Aujol and A. Chambolle, "Dual norms and image decomposition models", International Journal of Computer Vision, Vol.63, No.1, pp.85-104, 2005.
    J. L. Starck, M. Elad and D. L. Donoho, "Image decomposition via the combination of sparse representations and a variational approach", IEEE Transactions on Image Processing, Vol.14, No.10, pp.1570-1582, 2005.
    L.A. Vese and S.J. Osher, "Image denoising and decomposition with total variation minimization and oscillatory functions", Journal of Mathematical Imaging and Vision, Vol.20, No.1-2, pp.7-18, 2004.
    J.F. Aujol, G. Gilboa, T. Chan, et al., "Structure-texture image decomposition-modeling", algorithms, and parameter selection, International Journal of Computer Vision, Vol.67, No.1, pp.111-136, 2006.
    A. Chambolle and P.L. Lions, "Image recovery via total variation minimization and related problems", Numerische Mathematik, Vol.76, No.2, pp.167-188, 1997.
    T.F. Chan, S. Esedoglu and F.E. Park, "Image decomposition combining staircase reduction and texture extraction", Journal of Visual Communication and Image Representation, Vol.18, No.6, pp.464-486, 2007.
    T.F. Chan, S. Esedoglu and F.E. Park, "A fourth order dual method for staircase reduction in texture extraction and image restoration problems", UCLA CAM Report, pp.05-28, 2005.
    M. Bergounioux and L. Piffet, "A second-order model for image denoising", Set-Valued and Variational Analysis, Vol.18, No.3-4, pp.277-306, 2010.
    M. Bergounioux and L. Piffet, "A full second order variational model for multiscale texture analysis", Computational Optimization and Applications, Vol.54, No.2, pp.215-237, 2013.
    K. Bredies, K. Kunisch and T. Pock, "Total generalized variation", SIAM Journal on Imaging Sciences, Vol.3, No.3, pp.492-526, 2010.
    F. Knoll, K. Bredies, T. Pock, et al., "Second order total generalized variation (TGV) for MRI", Magnetic Resonance in Medicine, Vol.65, No.2, pp.480-491, 2011.
    A. Chambolle, R.A. De Vore, N.Y. Lee, et al., "Nonlinear wavelet image processing:Variational problems, compression, and noise removal through wavelet shrinkage", IEEE Transactions on Image Processing, Vol.7, No.3, pp.319-335, 1998.
    A. Chambolle, "An algorithm for total variation minimization and applications", Journal of Mathematical Imaging and Vision, Vol.20, No.1-2, pp.89-97, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (156) PDF downloads(535) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return