HUANG Qinghua, ZHANG Guangfei, FANG Yong. DOA Estimation Using Block Variational Sparse Bayesian Learning[J]. Chinese Journal of Electronics, 2017, 26(4): 768-772. doi: 10.1049/cje.2017.04.004
Citation: HUANG Qinghua, ZHANG Guangfei, FANG Yong. DOA Estimation Using Block Variational Sparse Bayesian Learning[J]. Chinese Journal of Electronics, 2017, 26(4): 768-772. doi: 10.1049/cje.2017.04.004

DOA Estimation Using Block Variational Sparse Bayesian Learning

doi: 10.1049/cje.2017.04.004
Funds:  This work is supported by the National Natural Science Foundation of China (No.61571279), and Shang Natural Science Foundation of China (No.14ZR1415000).
  • Received Date: 2015-01-22
  • Rev Recd Date: 2015-10-08
  • Publish Date: 2017-07-10
  • In Direction-of-arrival (DOA) estimation, the real-valued sparse Bayesian algorithm degrades the estimation performance by decomposing the complex value into real and imaginary components and combining them independently.We directly use complex probability density functions to model the noise and complex-valued sparse direction weights. Based on the Multiple measurement vectors (MMV), block sparse structure for the direction weights is integrated into the variational Bayesian learning to provide accurate source direction estimates. The proposed algorithm can be used for arbitrary array geometries and does not need the prior information of the incident signal number. Simulation results demonstrate the better performance of the proposed method compared with the real-valued sparse Bayesian algorithm, the Orthogonal matching pursuit (OMP) and l1 norm based complexvalued methods.
  • loading
  • H. Krim and M. Viberg, “Two decades of array signal processing research: The parametric approach”, IEEE Signal Process. Mag., Vol.13, No.4, pp.67-94, 1996.
    J.C. Chen, K. Yao and R.E. Hudson, “Acoustic source localization and beamforming: Theory and practice”, EURASIP Journal on Applied Signal Process., Vol.4, pp.359-370, 2003.
    R.O. Schimidt, “Multiple emitter location and signal parameter estimation”, IEEE Trans. Antennas Propagt., Vol.34, No.3, pp.276-280, 1986.
    A. Swindlehurst and T. Kailath, “A performance analysis of subspace based methods in the presence of model errors part I: The MUSIC algorithm”, IEEE Trans. Signal Process., Vol.40, No.7, pp.1578-1774, 1992.
    R. Roy and T. Kailath, “ESRIT-Estimation of signal parameters via rotational invariance techniques”, IEEE Trans. Acoust., Speech, Signal Process., Vol.37, No.7, pp.984-995, 1989.
    M.D. Zoltowski, M. Haardt and C.P. Mathews, “Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitaty ESPRIT”, IEEE Trans. Signal Process., Vol.44, No.2, pp.316-328, 1996.
    F. Gao and B. Gershman, “A generalized ESPRIT approach to direction-of-arrival estimator”, IEEE Signal Process. Lett., Vol.12, No.5, pp.254-257, 2005.
    I. Ziskind and M. Wax, “Maximum likelihood localization of multiple sources by alternating projection”, IEEE Trans. Acoust., Speech, Signal Process., Vol.36, No.10, pp.1553-1560, 1988.
    P. Stoica and A.B. Gershman, “Maximum-likelihood DOA estimation by data-supported grid search”, IEEE Signal Process. Lett., Vol.6, No.10, pp.273-275, 1999.
    J.A. Tropp and A.C. Gilbert, “Signal recovery from partial information via orthogonal matching pursuit”, IEEE Trans. Info. Theory, Vol.53, No.12, pp.4655-4666, 2007.
    R. Tibshirani, “Regression shrinkage and selection via the Lasso”, J. Royal Statist. Soc., Vol.58, No.1, pp.267-288, 1996.
    J. Chen and X. Huo, “Theoretical results on sparse representations of multiple-measurement vectors”, IEEE Trans. on Signal Process., Vol.54, No.12, pp.4634-4643, 2006.
    M. Yuan and Y. Lin, “Model selection and estimation in the regression with group variables”, J. Royal Statist. Soc. Series B, Vol.68, No.1, pp.49-67, 2006.
    D. Malioutov, M. Cetin and A.S. Willsky, “A sparse signal reconstruction perspective for source localization with sensor arrays”, IEEE Trans. Signal Process., Vol.53, No.8, pp.3010-3022, 2005.
    S. Ji, Y. Xue and L. Carin, “Bayesian compressive sensing”, IEEE Trans. Signal Process., Vol.56, No.6, pp.2346-2356, 2008.
    S. Ji, D. Dunson and L. Carin, “Multi-task compressive sampling”, IEEE Trans. Signal Process., Vol.57, No.1, pp.92-106, 2009.
    D. Shutin, T. Buchgraber, S.R. Kulkarni, et al., “Fast variational sparse Bayesian learning with automatic relevance determination for superimposed signals”, IEEE Trans. Signal Process., Vol.59, No.12, pp.6257-6261, 2011.
    M. Carlin, P. Rocca, G. Oliveri, et al., “Directional-of-arrival estimation through Bayesian compressive sensing strategies”, IEEE Trans. Antennas Propagat., Vol.61, No.7, pp.3828-3838, 2013.
    Q. Wu, Y.D. Zhang, M.G. Amin, et al., “Complex multitask Bayesian compressive sensing”, Proc. of IEEE International Conference on Acoustic, Speech and Signal Processing, Florence, Italy, pp.3375-3379, 2014.
    X. Gao, X. Li, F. Jason, et al., “A Sequential Bayesian Algorithm for DOA Tracking in Time-Varying Environments”, Chinese Journal of Electronics, Vol.24, No.1, pp.140-145, 2015.
    Z. Zhang and B.D. Rao, “Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning”, IEEE Journal Selected Topics Signal Process., Vol.5, No.5, pp.912-926, 2011.
    D.P. Wipf and B.D. Rao, “Sparse Bayesian learning for basis selection”, IEEE Trans. Signal Process., Vol.52, No.8, pp.2153-2164, 2004.
    M.E. Tipping, “Sparse Bayesian learning and the relevance vector machine”, Journal Machine Learning Research, Vol.1, pp.211-244, 2001.
    Q. Huang, J. Yang and S. Wei, “Variational Bayesian learning for speech modeling and enhancement”, Signal Process., Vol.87, No.9, pp.2026-2035, 2007.
    D.G. Tzikas, C.L. Likas and N.P. Galatsanos, “The variational approximation for Bayesian inference”, IEEE Signal Process. Mag., Vol.25, No.6, pp.131-146, 2008.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (146) PDF downloads(750) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint