PANG Shanqi, XU Wenju, DU Jiao, WANG Ying. Construction and Count of 1-Resilient Rotation Symmetric Boolean Functions on 4p Variables[J]. Chinese Journal of Electronics, 2017, 26(6): 1276-1283. doi: 10.1049/cje.2017.05.003
Citation: PANG Shanqi, XU Wenju, DU Jiao, WANG Ying. Construction and Count of 1-Resilient Rotation Symmetric Boolean Functions on 4p Variables[J]. Chinese Journal of Electronics, 2017, 26(6): 1276-1283. doi: 10.1049/cje.2017.05.003

Construction and Count of 1-Resilient Rotation Symmetric Boolean Functions on 4p Variables

doi: 10.1049/cje.2017.05.003
Funds:  This work is supported by National Natural Science Foundation of China (No.11571094, No.U1404601, No.11471104, No.61402154, No.11501181), Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No.14IRTSTHN023), Ph.D. Research Startup Foundation of Henan Normal University (No.5101019170133), and the Basic and Cutting-edge Technology Research Projects of Science and Technology Department of Henan Province (No.132300410430).
More Information
  • Corresponding author: DU Jiao (corresponding author) was born in Hubei, China, in 1978. He received the M.S. degree in mathematics from Henan Normal University, Xinxiang, China, and the Ph.D. Degree in cryptography from Beijing University of Posts and Telecommunications, Beijing, China, in 2008 and 2013 respectively. (Email:jiaodudj@126.com)
  • Received Date: 2016-01-06
  • Rev Recd Date: 2016-03-28
  • Publish Date: 2017-11-10
  • This paper studies the properties of orbit matrix and gives a formula to compute the number of these orbit matrices on 4p variables, where p is an odd prime. It has been demonstrated that the construction of 1-resilient Rotation symmetric Boolean functions (RSBFs) on 4p variables is equivalent to solving an equation system. By the proposed method, all 1-resilient RSBFs on 12 variables can be constructed. We present a counting formula for the total number of all 1-resilient RSBFs on 4p variables. As application of our method, some 1-resilient RSBFs on 12 variables are presented.
  • loading
  • J. Pieprzyk and C. Qu, "Fast hashing and rotation symmetric functions", Journal Universal Computer Science, Vol.5, No.1, pp.20-31, 1999.
    S. Fu, C. Li and L. Qu, "On the number of rotation symmetric Boolean functions", Science China Information Sciences, Vol.53, No.3, pp.537-545, 2010.
    S. Fu, L. Qu and C. Li, "Balanced rotation symmetric Boolean functions with maximum algebraic immunity", IET Information Security, Vol.5, No.2, pp.93-99, 2011.
    P. Stanica and S. Maitra, "Rotation symmetric Boolean functions count and cryptographic properties", Discrete Applied Mathematics, Vol.156, pp.1567-1580, 2008.
    P. Zhang, S. Fu and L. Qu, "Count of balanced rotation symmetric Boolean functions", Journal of Applied Sciences-Electronics and Information Engineering, Vol.30, pp.45-51, 2012. (in Chinese)
    L. Jiao, M. Wang and Y. Li, et al, "On annihilators in fewer variables:basic theory and applications", Chinese Journal of Electronics, Vol.22, No.3, pp.489-494, 2013.
    J. Liu and L. Chen, "On the degree of completeness of cryptographic functions", Chinese Journal of Electronics, Vol.31, No.5, pp.489-495, 2014.
    Z. Zhuo, J. Chong and S. Wei, "Some properties of correlation function on generalized boolean functions", Chinese Journal of Electronics, Vol.24, No.1, pp.166-169, 2015.
    T. Siegenthaler, "Correlation-immunity of nonlinear combining functions for cryptographic applications", IEEE Transactions on Information Theory, Vol.30, No.5, pp.776-780, 1984.
    B. Chor, O. Goldreich and J. Hasted, et al., "The bit extraction problem or t-resilient functions", Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, pp.396-407, 1985.
    C.H. Bennett, G. Brassard and J.M. Robert. "Privacy amplification by public discussion", SIAM J. Comput., Vol.17, pp.210-229, 1988.
    J. Peng and H. Kan, "Constructing correlation immune symmetric Boolean functions", IEICE Trans. Fundam., E94-A, No.7, pp.1591-1596, 2011.
    W. Zhang and E. Pasalic, "Constructions of resilient S-boxes with strictly almost optimal nonlinearity through disjoint linear codes", IEEE Transactions on Information Theory, Vol.60, No.3, pp.1638-1651, 2014.
    W. Zhang and E. Pasalic, "Generalized Maiorana-McFarland construction of resilient Boolean functions with high nonlinearity and good algebraic properties", IEEE Transactions on Information Theory, Vol.60, No.10, pp.6681-6695, 2014.
    J. Du, Q. Wen and J. Zhang, "Construction and count of resilient rotation symmetric Boolean functions with prime number variables", Journal on Communications, Vol.34, No.3, pp.6-13, 2013. (in Chinese)
    J. Du, Q. Wen, J. Zhang, et al., "Construction and count of 1-resilient rotation symmetric Boolean functions on pq variables", IEICE Trans. Fundamentals, Vol.E96-A, No.7, pp.1653-1656, 2013.
    J. Du, S. Pang and Q. Wen, "Construction and count of 1-resilient rotation symmetric Boolean functions on pr variables", Chinese Journal of Electronics, Vol.23, No.4, pp.816-820, 2014.
    J. Du, Q. Wen, J. Zhang, et al., "Constructions of resilient rotation symmetric Boolean functions on given number of variables", IET Information Security, Vol.8, No.5, pp.265-272, 2014.
    S. Kavut and M. Yucel, "9-variables Boolean functions with nonlinearity 242 in the generalized rotation symmetric class", Information and Computation, Vol.208, pp.341-350, 2010.
    S. Kavut, S. Maitra and M. Yucel, "Search for Boolean functions with excellent profiles in the rotation symmetric class", IEEE Trans. Inform. Theory, Vol.53, pp.1743-1751, 2007.
    Y. Zhang, Y. Lu and S. Pang, "Orthogonal arrays obtained by orthogonal decomposition of projection matrices", Stat. Sin., Vol.9, No.2, pp.595-604, 1999.
    Q. Wen, X. Niu and Y. Yang, The Boolean Functions in Modern Cryptology, Science Press, Beijing, 2000. (in Chinese)
    Y. Zhang, S. Pang and Y. Wang, "Orthogonal arrays obtained by the generalized Hadamard product", Discrete Math, Vol.238, pp.151-170, 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (174) PDF downloads(216) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return