Citation: | SHI Hongyin, YANG Xiaoyan, ZHOU Qiuxiao, LIAN Qiusheng. SAR Slow Moving Target Imaging Based on Over-Sampling Smooth Algorithm[J]. Chinese Journal of Electronics, 2017, 26(4): 876-882. DOI: 10.1049/cje.2017.06.005 |
V.C. Chen and H. Ling, Time-frequency Transforms for Radar Imaging and Signal Analysis, Artech House Inc Boston MA, 2002.
|
D.E. Wahl, P.H. Eichel, D.C. Ghiglia, et al., “Phase gradient autofocus—A robust tool for high resolution SAR phase correction”, IEEE Trans. Aerosp. Electron. Syst., Vol.30, No.3, pp.827-835, 1994.
|
S. Werness, W. Carrara, L. Joyce, et al., “Moving target imaging algorithm for SAR data”, IEEE Transactions on Aerospace and Electronic Systems, Vol.26, No.1, pp.57-67, 1990.
|
P.A.C. Marques and J.M.B. Dias, “Velocity estimation of fast moving targets using a single SAR sensor”, IEEE Transactions on Aerospace and Electronic Systems, Vol.41, No.1, pp.75-89, 2005.
|
P.A.C. Marques and J.M.B. Dias, “Moving target processing in SAR spatial domain”, IEEE Transactions on Aerospace and Electronic Systems, Vol.43, No.3, pp.864-874, 2007.
|
G. Li, X.G. Xia, J. Xu, et al, “A velocity estimation algorithm of moving targets using single antenna SAR”, IEEE Transactions on Aerospace and Electronic Systems, Vol.45, No.3, pp.1052-1062, 2009.
|
S. Barbarossa and A. Farina, “Detection and imaging of moving objects with synthetic aperture radar”, Radar and Signal Processing IEE Proceedings F, Vol.139, No.1, pp.79-97, 1992.
|
C. Noviello, G. Fornaro and M. Martorella, “Focused SAR image formation of moving targets based on doppler parameter estimation”, IEEE Transactions on Geoscience and Remote Sening, Vol.53, No.6, pp.3460-3470, 2015.
|
R.P. Perry, R.C. Dipietro and R.L. Fante, “SAR maging of moving targets”, IEEE Transaction on Aerospace and Electronic Systems, Vol.35, No.1, pp.188-200, 1999.
|
F. Zhou, R. Wu, M. Xing, et al, “Approach for single channel SAR ground moving target imaging and motion parameter estimation”, IET Radar, Sonar and Navigation, Vol.1, No.1, pp.59-66, 2007.
|
G. Li, X.G. Xia and Y.N. Peng, “Doppler keystone transform for SAR imaging of moving Targets”, IEEE Geoscience and Remote Sensing Letters, Vol.5, No.4, pp.573-577, 2008.
|
N.O. Önhon and M. Çetin, “A sparsity-driven approach for joint SAR imaging and phase error correction”, IEEE Trans. Image Processing, Vol.21, No.4, pp.2075-2088, 2012.
|
N. Ö. Önhon and M. Çetin, “SAR moving target imaging in a sparsity-driven framework”, Proc. SPIE Optics Photonics, Wavelets and Sparsity XIV, Vol.8138, pp.813806, 2011.
|
Y. Shechtman, Y.C. Eldar, O. Cohen, et al., “Phase retrieval with application to optical imaging”, IEEE Signal Processing Magazine, Vol.32, No.3, pp.87-109, 2015.
|
J.R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Optics Letters, Vol.3, No.1, pp.27-29, 1978.
|
J.R. Fienup. “Phase retrieval algorithms: A comparison”, Applied Optics, Vol.21, No.15, pp.2758-2769, 1982.
|
A. Fannjiang, “Absolute uniqueness of phase retrieval with random illumination”, Inverse Problems, Vol.28, No.7, pp.75008-75027, 2011.
|
J.A. Rodriguez, R. Xu, C.C. Chen, et al., “Over-sampling smoothness: An effective algorithm for phase retrieval of noisy diffraction intensities”, Journal of Applied Crystallography, Vol.46, No.2, pp.312-318, 2013.
|
E.J. Candes, Y. Eldar, T. Strohmer, et al., “Phase retrieval via matrix completion”, SIAM Journal on Imaging Sciences, Vol.6, No.1, pp.199-225, 2013.
|
E.J. Candes, T. Strohmer and V. Voroninski, “Phaselift: Exact and stable signal recovery from magnitude measurements via convex programmin”, Communications on Pure and Applied Mathematics, Vol.66, No.8, pp.1241-1274, 2013.
|
Y. Shechtman, A. Beck and Y.C. Eldar, “Gespar: Efficient phase retrieval of sparse signals”, IEEE Trans. Signal Processing, Vol.62, No.4, pp.928-938, 2014.
|
G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing, CRC Press, 1999.
|
[1] | LI Wenping, YANG Jing, ZHANG Jianpei. Sampling Streaming Data Along Geodesic[J]. Chinese Journal of Electronics, 2015, 24(2): 251-257. DOI: 10.1049/cje.2015.04.005 |
[2] | LI Haisheng, LIU Xuan, LAI Long, CAI Qiang, DU Junping. An Area Weighted Surface Sampling Method for 3D Model Retrieval[J]. Chinese Journal of Electronics, 2014, 23(3): 484-488. |
[3] | HE Gaiyun, SONG Zhanjie. An Almost Sure Result on Sampling of Bandlimited Random Signals[J]. Chinese Journal of Electronics, 2013, 22(4): 747-750. |
[4] | WEN Hao, WEN Youkui. Face Recognition Using Spatially Smooth and Maximum Minimum Value of Manifold Preserving[J]. Chinese Journal of Electronics, 2013, 22(1): 71-75. |
[5] | NI Boyi, XIAO Deyun. Optimal Nonuniform Sampling for System Identification on Sparsely Sampled Data[J]. Chinese Journal of Electronics, 2012, 21(2): 292-298. |
[6] | ZHAI Yun, MA Nan, RUAN Da, AN Bing. An Effective Over-sampling Method for Imbalanced Data Sets Classification[J]. Chinese Journal of Electronics, 2011, 20(3): 489-494. |
[7] | HUANG Yongfeng, YUAN Jian, CHEN Minchao, XIAO Bo. Key Distribution over the Covert Communication Based on VoIP[J]. Chinese Journal of Electronics, 2011, 20(2): 357-360. |
[8] | CHENG Yuhu, FENG Huanting, WANG Xuesong. Actor-Critic Learning Based on AdaptiveImportance Sampling[J]. Chinese Journal of Electronics, 2010, 19(4): 583-588. |
[9] | GUO Liang, XING Mengdao, LIANG Yi, TANG Yu. Modified Frequency Scaling Algorithm for Synthetic Aperture Imaging Ladar Imaging Through the Turbulence[J]. Chinese Journal of Electronics, 2009, 18(1): 187-191. |
[10] | SU Hongtao, SHUI Penglang, LIU Hongwei, BAO Zheng. Particle Filter Based Track-before-detect Algorithm for Over-the-horizon Radar TargetDetection and Tracking[J]. Chinese Journal of Electronics, 2009, 18(1): 60-64. |
1. | Chen, Z., Fang, Y., Zhang, R. et al. Layout of Detection Array Based on Multi-Strategy Fusion Improved Adaptive Mayfly Algorithm in Bearing-Only Sensor Network. Sensors, 2024, 24(8): 2415. DOI:10.3390/s24082415 | |
2. | Zhao, Z., Xu, C. Dual-UAVs Collaborative Target Localization and Configuration Optimization. 2024. DOI:10.1109/ACSAT63853.2024.10823872 | |
3. | Wang, C., Fu, W., Zhang, T. et al. A Space Vector-Based Long-Range AOA Localization Algorithm with Reference Points. International Journal of Aerospace Engineering, 2024. DOI:10.1155/2024/2914212 | |
4. | Wang, S., Li, Y., Qi, G. et al. Optimal Geometry and Motion Coordination for Multisensor Target Tracking with Bearings-Only Measurements. Sensors, 2023, 23(14): 6408. DOI:10.3390/s23146408 | |
5. | Ma, G., Huang, Z., Wang, M. et al. Performance Analysis and Sensor-Target Geometry Optimization for TOA and TDOA-Based Hybrid Source Localization Method. Applied Sciences (Switzerland), 2022, 12(24): 12977. DOI:10.3390/app122412977 | |
6. | Wang, C., Fu, W., Zhang, T. et al. An AOA Optimal Positioning Method Incorporating Station Error and Sensor Deployment. Aerospace, 2022, 9(12): 766. DOI:10.3390/aerospace9120766 | |
7. | Sun, S., Liu, Y., Guo, S. et al. Observation-Driven Multiple UAV Coordinated Standoff Target Tracking Based on Model Predictive Control. Tsinghua Science and Technology, 2022, 27(6): 948-963. DOI:10.26599/TST.2021.9010033 | |
8. | Shi, H.-R., Lu, F.-X., Wang, H.-Y. et al. Cooperative control and collision avoidance for two UAVs based on optimization of observation | [基于观测优化的双机协同控制与避障]. Kongzhi yu Juece/Control and Decision, 2022, 37(3): 593-604. DOI:10.13195/j.kzyjc.2020.1168 | |
9. | Shi, H.-R., Lu, F.-X., Wu, L. et al. Trajectory Optimization of Multi-UAVs for Marine Target Tracking during Approaching Stage. Genetics Research, 2022. DOI:10.1155/2022/5472105 | |
10. | Still, L., Oispuu, M., Koch, W. Accuracy Study on Target Localization Using Acoustic Bearing Measurements Including Urban Reflections. 2022. DOI:10.23919/FUSION49751.2022.9841316 | |
11. | Ma, Z., Kirubarajan, T., Li, Y. Finite-time encirclement rotating tracking for surface formation targets with bearing-only measurements. Nonlinear Dynamics, 2021, 105(4): 3323-3339. DOI:10.1007/s11071-021-06818-0 | |
12. |
Still, L., Oispuu, M., Koch, W. Optimal Sensor Placement for Shooter Localization Using a Genetic Algorithm. 2021.
![]() |
|
13. | Still, L., Oispuu, M., Koch, W. Optimal Sensor Placement for Shooter Localization within a Surveillance Area. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2021. DOI:10.1109/MFI52462.2021.9591199 | |
14. | Wang, D., Huang, D., Xu, C. An improved method for Two-UAV trajectory planning for cooperative target locating based on airborne visual tracking platform. IEICE Transactions on Information and Systems, 2021, E104D(7): 1049-1053. DOI:10.1587/transinf.2020EDL8139 | |
15. | Lu, Y., Zhou, Z. Observation station track optimization of airborne external transmitter location system | [空基外辐射源定位系统的观测站航迹优化]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2020, 42(12): 2708-2715. DOI:10.3969/j.issn.1001-506X.2020.12.06 | |
16. | Haoran, S., Faxing, L., Hangyu, W. et al. Optimal observation configuration of UAVs based on angle and range measurements and cooperative target tracking in three-dimensional space. Journal of Systems Engineering and Electronics, 2020, 31(5): 996-1008. DOI:10.23919/JSEE.2020.000074 | |
17. | Zhang, H., Xie, W. Constrained Unscented Kalman Filtering for Bearings-Only Maneuvering Target Tracking. Chinese Journal of Electronics, 2020, 29(3): 501-507. DOI:10.1049/cje.2020.02.006 | |
18. | Raju, R.G., Kashyap, S.K. 3D localisation of target using elevation angle algorithm with the use of ground radars. Defence Science Journal, 2020, 70(3): 260-271. DOI:10.14429/dsj.70.14277 | |
19. | Wang, J., Qin, Z., Gao, F. et al. An approximate maximum likelihood algorithm for target localization in multistatic passive radar. Chinese Journal of Electronics, 2019, 28(1): 195-201. DOI:10.1049/cje.2018.02.018 | |
20. | Hong, J., Kim, Y., Bang, H. Cooperative circular pattern target tracking using navigation function. Aerospace Science and Technology, 2018. DOI:10.1016/j.ast.2018.02.011 |