WANG Youhua, ZHANG Yiming, ZHANG Jianqiu, HU Bo. Greedy Matrix Completion with Fitting Error and Rank Iterative Minimization[J]. Chinese Journal of Electronics, 2017, 26(4): 814-819. doi: 10.1049/cje.2017.06.013
Citation: WANG Youhua, ZHANG Yiming, ZHANG Jianqiu, HU Bo. Greedy Matrix Completion with Fitting Error and Rank Iterative Minimization[J]. Chinese Journal of Electronics, 2017, 26(4): 814-819. doi: 10.1049/cje.2017.06.013

Greedy Matrix Completion with Fitting Error and Rank Iterative Minimization

doi: 10.1049/cje.2017.06.013
Funds:  This work is supported by the National Natural Science Foundation of China (No.61171127, No.61571131).
More Information
  • Corresponding author: ZHANG Yiming (corresponding author) was born in 1990. He is currently a global academic fellow in Statistics at New York University Abu Dhabi. His research interests include statistical machine learning and signal processing. (Email: yiming. zhang@nyu.edu)
  • Received Date: 2015-03-09
  • Rev Recd Date: 2015-07-14
  • Publish Date: 2017-07-10
  • A novel matrix completion algorithm which iteratively minimizes the fitting error and the matrix rank is presented. Unlike conventional matrix completion algorithms, which usually require some relaxation technique to cope with the low rank constraints, the proposed algorithm does not require any such techniques, thus making the selection of the parameter q of the matrix q-norm (0 < q ≤1) or the regularization parameter unnecessary. Simulation results of the random generated data and Jester joke data set verify our algorithm's effectiveness and superiority over the reported algorithms in literature.
  • loading
  • J.-F. Cai, E.J. Candès and Z. Shen, “A singular value thresholding algorithm for matrix completion”, SIAM Journal on Optimization, Vol.20, No.4, pp.1956-1982, 2010.
    E.J. Candès and B. Recht, “Exact matrix completion via convex optimization”, Foundations of Computational Mathematics, Vol.9, No.6, pp.717-772, 2009.
    E. Candes and T. Tao, “The power of convex relaxation: Nearoptimal matrix completion”, IEEE Transactions on Information Theory, Vol.56, No.5, pp.2053-2080, 2010.
    R. Keshavan, A.Montanari and S. Oh, “Matrix completion from a fewentries”, IEEE Transation on Information Theory, Vol.56, No.6, pp.2980-2998, 2010.
    J.D.M. Rennie and N. Srebro, “Fast maximum margin matrix factorization for collaborative prediction”, Proceedings of the 22nd International Conference on Machine Learning, ser. ICML '05, New York, NY, USA: ACM, pp.713-719, 2005.
    N. Linial, E. London and Y. Rabinovich, “The geometry of graphs and some of its algorithmic applications”, Combinatorica, Vol.15, No.2, pp.215-245, 1995.
    Z.-P. Liang, “Spatiotemporal imagingwith partially separable functions”, 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2007, ISBI 2007, Arlington: IEEE, pp.988-991, 2007.
    R. Mazumder, T. Hastie and R. Tibshirani, “Spectral regularization algorithms for learning large incomplete matrices”, Journal of Machine Learning Research, Vol.11, pp.2287-2322, 2010.
    K.-C. Toh and S. Yun, “An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems”, Pacific Journal of Optimization, Vol.6, No.15, pp.615-640, 2010.
    S. Ma, D. Goldfarb and L. Chen, “Fixed point and bregman iterative methods for matrix rank minimization”, Mathematical Programming, Vol.128, No.1-2, pp.321-353, 2011.
    G. Marjanovic and V. Solo, “On lq optimization and matrix completion”, IEEE Transactions on Signal Processing, Vol.60, No.11, pp.5714-5724, 2012.
    W. Dai, E. Kerman, and O. Milenkovic, “A geometric approach to low-rank matrix completion”, IEEE Transactions on Information Theory, Vol.58, No.1, pp.237-247, 2012.
    R.H. Keshavan and S. Oh, “Optspace: A gradient descent algorithm on the grassman manifold for matrix completion”, arXiv preprint arXiv:0910.5260, 2009.
    S.D. Babacan, M. Luessi, R. Molina and A.K. Katsaggelos, “Sparse bayesian methods for low-rank matrix estimation”, IEEE Transactions on Signal Processing, Vol.60, No.8, pp.3964-3977, 2012.
    F. Leger, G. Yu and G. Sapiro, “Efficient matrix completion with gaussian models”, In ICASSP, Prague, pp.1113-1116, 2011.
    C.S. Zhao Yujuan, Zheng Baoyu, “Projected gradient descent based on soft thresholding in matrix completion”, Journal of Electronics (CHINA), Vol.30, No.6, pp.517-524, 2013.
    D.T. Tianyi Zhou, “Godec: Randomized low-rank & sparse matrix decomposition in noisy case”, Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA, pp.101-104, 2011.
    R.H. Keshavan, A. Montanari and S. Oh, “Matrix completion from noisy entries”, Journal of Machine Learning Research, Vol.11, pp.2057-2078, 2010.
    A. Beck and M. Teboulle, “A fast iterative shrinkagethresholding algorithm for linear inverse problems”, SIAM Journal on Imaging Sciences, Vol.2, No.1, pp.183-202, 2009.
    A.M.Z.Z. Lu, “Generalized bayesian information criterion for source enumeration in array processing”, IEEE Transactions on Signal Processing, Vol.61, No.6, pp.1470-1480, 2013.
    S. Friedland, A. Niknejad, M. Kaveh, and H. Zare, “Fast montecarlo low rank approximations for matrices”, System of Systems Engineering, 2006 IEEE/SMC International Conference on, Los Angeles: IEEE, pp.6-10, 2006.
    K. Goldberg, T. Roeder, D. Gupta and C. Perkins, “Eigentaste: A constant time collaborative filtering algorithm”, Information Retrieval, Vol.4, No.2, pp.133-151, 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (142) PDF downloads(303) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return