LI Hongxin, GAO Ming, YAN Xueping, et al., “Fair Efficiency Comparisons of Decoy-State Quantum Key Distribution Protocols,” Chinese Journal of Electronics, vol. 27, no. 2, pp. 241-249, 2018, doi: 10.1049/cje.2017.07.011
Citation: LI Hongxin, GAO Ming, YAN Xueping, et al., “Fair Efficiency Comparisons of Decoy-State Quantum Key Distribution Protocols,” Chinese Journal of Electronics, vol. 27, no. 2, pp. 241-249, 2018, doi: 10.1049/cje.2017.07.011

Fair Efficiency Comparisons of Decoy-State Quantum Key Distribution Protocols

doi: 10.1049/cje.2017.07.011
Funds:  This work is supported by the National High Technology Research and Development Program of China (No.2011AA010803), the National Natural Science Foundation of China (No.61472446, No.U1204602), and the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing (No.2013A14).
More Information
  • Corresponding author: GAO Ming (corresponding author) was born in Henan Province, China. He received the Ph.D. degree in quantum physics from National University of Defense Technology, China. His research interests include quantum cryptography and quantum computation. (
  • Received Date: 2017-03-01
  • Rev Recd Date: 2017-06-13
  • Publish Date: 2018-03-10
  • Taking the schemes based on different formulas of secure key rate as examples, we give a fair comparison between typical protocols under Universal composable (UC) security frame. Through analyzing the relationship of security parameters in post-processing stage and final secure key rate, we achieve the unified quantification between protocols based on Gottesman-Lo-LütkenhausPreskill (GLLP) formula and the ones under UC security. Based on the above research, the impact of different sending lengths and secure parameters on secure key rate is investigated. Besides, we analyze the conditions of fair comparison, and for the first time we give a fair comparison between the protocols based on GLLP formula and smooth entropy. By typical efficiency comparisons, we summarize the way for improving secure key rate in the light intensity choice and the single bit error rate estimation method.
  • loading
  • D. Mayers, "Quantum keay distribution and string oblivious transfer in noisy channels", CRYPTO'96, LNCS, Springer Berlin Heidelberg, Vol.1109, pp.343-357, 1996.
    D. Mayers, "Unconditional security in quantum cryptography", J. ACM, Vol.48, No.3, pp.351-406, 2001.
    D. Mayers and A. Yao, "Quantum cryptography with imperfect apparatus", Symposium on Foundation of Computer Science, pp.503-509, 1998.
    C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, et al., "Mixed state entanglement and quantum error correction", Phys. Rev. A, Vol.54, No.5, pp.3824-3851, 1996.
    H.K. Lo and H.F. Chau, "Unconditional security of quantum key distribution over arbitrarily long distances", Science, Vol.283, No.1, pp.2050-2056, 1999.
    P. Shor and J. Preskill, "Simple proof of security of the BB84 quantum key distribution protocol", Phys. Rev. Lett., Vol.85, No.2, pp.441-444, 2000.
    R. Renner, "Security of quantum key distribution", International Journal of Quantum Information, Vol.6, No.1, pp.1-127, 2005.
    D. Gottesman, H.K. Lo, N. Lütkenhaus, et al., "Security of quantum key distribution with imperfect devices", Quantum Information & Computation, Vol.4, No.5, pp.325-360, 2004.
    C.H. Bennett and G. Brassard, "Quantum cryptography:Public-key distribution and coin tossing", Proc. of the International Conference on Computers, Systems and Signal Processing, Bangalore Press, India, Vol.560, pp.175-179, 1984.
    M. Ben-Or, M. Horodecki, D.W. Leung, et al., "The universal composable security of quantum key distribution", Second Theory of Cryptography Conference TCC 2005, Lecture Notes in Computer Science, Springer-Verlag, Vol.3378, pp.386-406, 2005.
    R. Renner and R. König, "Universally composable privacy amplification against quantum adversaries", Second Theory of Cryptography Conference TCC 2005, Lecture Notes in Computer Science, Springer-Verlag, Vol.3378, pp.407-425, 2005.
    R. Canetti, "Universally composable symbolic security analysis", Journal of Cyptology, Vol.24, No.1, pp.83-147, 2011.
    R. Canetti and H. Krawczyk, "Universally composable notions of key exchange and secure channels", EUROCRYPT 2002:Lecture Notes in Computer Science, Springer-Verlag, New York, Vol.2332, pp.337-351, 2002.
    W.Y. Hwang, "Quantum key distribution with high loss:‘Toward global secure communication"’, Phys. Rev. Lett, Vol.91, No.5, Page 057901, 2003.
    X.B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography", Phys. Rev. Lett, Vol.94, No.23, Page 0503, 2005.
    H.K. Lo, X.F. Ma and K. Chen, "Decoy state quantu key distribution", Phys. Rev. Lett, Vol.94, No.23, pp.143, 2005.
    X.F. Ma, B. Qi, Y. Zhao, et al., "Practical decoy state for quantum key distribution", Phys. Rev. A, Vol.72, No.1, pp.1-127, 2005.
    R.Y. Cai and V. Scarani, "Finite-key analysis for practical implementations of quantum key distribution", New J. Phys., Vol.11, No.4, Page 045024, 2009.
    Z.C. Wei, et al., "Decoy-state quantum key distribution with biased basisi choice", Sci. Rep., Vol.6147, No.3, Page 2453, 2013.
    M. Lucamarini, K.A. Patel, et al., "Efficient decoy-state quantum key distribution with quantified security", Optics Express, Vol.21, No.2, pp.4550-4565, 2013.
    C.C.W. Lim, M. Curty, N. Walenta, et al., "Concise security bounds for practical decoy-state quantum key distribution", Phys. Rev. A, Vol.89, No.2, Page 2307, 2014.
    C.F. Fung, X.F. Ma and H.F. Chau, "Practical issues in quantum-key-distribution postprocessing", Phys. Rev. A, Vol.81, No.1, pp.5780-5787, 2010.
    H.X. Li, M. Gao, Z. Ma, et al., "Research on UC secure finitekey protocol with decoy state", Journal of Cryptologic Research, Vol.30, No.12, pp.1459-1469, 2014.
    C. Zhou, W.S. Bao and X.Q. Fu, "Decoy-state quantum key distribution based on state-dependent imperfections", Chinese Journal of Electronics, Vol.40, No.10, pp.2015-2020, 2012.
    J. Li, Z.S. Pan, J. Zheng, et al., "The Security analysis of quantum ‘SAGR04’ protocol in collective-rotation noise channel", Chinese Journal of Electronics, Vol.24, No.4, pp.689-693, 2015.
    H.X. Li, H.D. Jiang, M. Gao, et al., "Statistical-fluctuation analysis for quantum key distribution with consideration of after-pulse contributions", Physical Review A, Vol.92, No.6, Page 2344, 2015.
    C. Wang, S. Wang, Z.Q. Yin, et al., "Experimental measurement-device-independent quantum key distribution with uncharacterized encoding ", Optics Letters, Vol.41, No.23, pp.5596-5599, 2016.
    Y.C. Jeong, Y.S. Kim and Y.H. Kim. "Experimental comparison between one-decoy and two-decoy implementations of the Bennett-Brassard 1984 quantum cryptography protocol", Physical Review A, Vol.93, No.1, pp.1-5, 2016.
    S. Zhang, Z. Xie, Y. Chang, et al., "Study on quantum trust model based on node trust evaluation", Chinese Journal of Electronics, Vol.26, No.3, pp.608-613, 2017.
    I. Devetak and A. Winter, "Distillation of secret key and entanglement from quantum states", Proc. R. Soc. A., Vol.461, No.2053, pp.207-235, 2005.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (436) PDF downloads(231) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint