DU Xiaolei, WEI Yingmei, WU Lingda. Interactive Details on Demand Visual Analysis on Large Attributed Networks[J]. Chinese Journal of Electronics, 2018, 27(5): 900-909. doi: 10.1049/cje.2017.08.014
Citation: DU Xiaolei, WEI Yingmei, WU Lingda. Interactive Details on Demand Visual Analysis on Large Attributed Networks[J]. Chinese Journal of Electronics, 2018, 27(5): 900-909. doi: 10.1049/cje.2017.08.014

Interactive Details on Demand Visual Analysis on Large Attributed Networks

doi: 10.1049/cje.2017.08.014
Funds:  This work is supported by the National Natural Science Foundation of China (No.61402487).
More Information
  • Corresponding author: WEI Yingmei (corresponding author) was born in 1972. She received the B.S., M.S., and Ph.D. degrees in National University of Defense Technology, Changsha, China. She is the professor at the same university. Her research interests include multimedia information systems, information visualization and visual analysis techniques. (Email:weiyingmei126@126.com)
  • Received Date: 2017-03-01
  • Rev Recd Date: 2017-06-05
  • Publish Date: 2018-09-10
  • Increasing scale leaves a challenging problem for visualizing large attributed networks. This paper proposes a details on demand approach for exploratory visual analysis on large attributed networks. Major structures are located and emphasized at each level, providing clues for user observation. The detailed subnet structure emerges gradually through the exploration process. Our method dynamically aggregates network with consideration of both structural and attribute properties. It allows a flexible control of the hierarchy structure. A userspecified interaction strategy is introduced to enable users to customize the analysis flow according to different analytic tasks. Case studies demonstrate that the proposed method is effective in extracting global knowledge, locating major structures, and discovering hidden information in networks.
  • loading
  • C. Vehlow, F. Beck and D. Weiskopf, “The state of the art in visualizing group structures in graphs”, Proc. of Eurographics Conference on Visualization, EuroVis-STARs, Chicago, Illinois, USA, pp.21-40, 2015.
    R. Pienta, J. Abello, M. Kahng, et al., “Scalable graph exploration and visualization: Sensemaking challenges and opportunities”, Proc. of IEEE International Conference on Big Data and Smart Computing (BIGCOMP), Jeju, South Korea, pp.271-278, 2015.
    Y. Jia, J. Hoberock, M. Garland, et al., “On the visualization of social and other scale-free networks”, IEEE Transactions on Visualization and Computer Graphics, Vol.14, No.6, pp.1285-1292, 2008.
    L. Shi, Q. Liao, X. Sun, et al., “Scalable network traffic visualization using compressed graphs”, Proc. of IEEE International Conference on Big Data, Santa Clara, California, USA, pp.606-612, 2013.
    C. Dunne and B. Shneiderman, “Scalable network traffic visualization using compressed graphs”, Proc. of ACM SIGCHI International Conference on Human Factors in Computing Systems, Paris, France, pp.3247-3256, 2013.
    M.E.J. Newman and M. Girvan, “Finding and evaluating community structure in networks”, Physical Review E, Vol.14, No.2, pp.026113, 2004.
    F. Lorrain and H.C. White, “Structural equivalence of individuals in social networks”, The Journal of mathematical sociology, Vol.1, No.1, pp.49-80, 1971.
    J.A. Hartigan and M.A. Wong, “Algorithm AS 136: A k-means clustering algorithm”, Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol.28, No.1, pp.100-108, 1979.
    J. Abello, F.V. Ham and N. Krishnan, “ASK-GraphView: A large scale graph visualization system”, IEEE Transactions on Visualization and Computer Graphics, Vol.12, No.5, pp.669-676, 2006.
    W. Didimo, G. Liotta, F. Montecchiani, et al., “An advanced network visualization system for financial crime detection”, Proc. of IEEE Pacific Visualization Symposium, PacificVis, Hong Kong, China, pp.203-210, 2011.
    G. Kumar and M. Garland, “Visual exploration of complex time-varying graphs”, IEEE Transactions on Visualization and Computer Graphics, Vol.12, No.5, pp.805-812, 2006.
    J.M. Kleinberg, “Authoritative sources in a hyperlinked environment”, Journal of the ACM, Vol.46, No.5, pp.604-632, 1999.
    L. Shi, N. Cao, S. Liu, et al., “HiMap: Adaptive visualization of large-scale online social networks”, Proc. of IEEE Pacific Visualization Symposium, PacificVis, Beijing, China, pp.41-48, 2009.
    V. Batagelj, F.J. Brandenburg, W. Didimo, et al., “Visual analysis of large graphs using (X,Y)-clustering and hybrid visualizations”, IEEE Transactions on Visualization and Computer Graphics, Vol.17, No.11, pp.1587-1598, 2011.
    D. Archambault, T. Munzner and D. Auber, “GrouseFlocks: Steerable exploration of graph hierarchy space”, IEEE Transactions on Visualization and Computer Graphics, Vol.14, No.4, pp.900-913, 2008.
    F.v. Ham, and J.J.v. Wijk, “Interactive visualization of small world graphs”, Proc. of IEEE Symposium on Information Visualization, INFOVIS, Austin, Texas, USA, pp.199-206, 2004.
    J. Cheng, Y. Ke, S. Chu, et al., “Efficient core decomposition in massive networks”, Proc. of IEEE International Conference on Data Engineering, ICDE, Hannover, Germany, pp.51-62, 2011.
    R.H. Li, L. Qin, J.X. Yu, et al., “Influential community search in large networks”, Proc. of International Conference on Very Large Data Bases, VLDB Endowment, Seoul, Korea, pp.509-520, 2015.
    S.B. Seidman, “Network structure and minimum degree”, Social networks, Vol.5, No.3, pp.269-287, 1983.
    X. Xu, N. Yuruk, Z. Feng, et al., “SCAN: A structural clustering algorithm for networks”, Proc. of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, California, USA, pp.824-833, 2007.
    Y. Tian, R.A. Hankins and J.M. Patel, “Efficient aggregation for graph summarization”, Proc. of ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, pp.567-580, 2008.
    Y. Qian, G. Zhang and K. Zhang, “FAÇADE: A fast and effective approach to the discovery of dense clusters in noisy spatial data”, Proc. of ACM SIGMOD International Conference on Management of data, Paris, France, pp.921-922, 2004.
    Y. Qian and K. Zhang, “Discovering spatial patterns accurately with effective noise removal”, Proc. of ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, DMKD, Paris, France, pp.43-50, 2004.
    P. Sen, G.M. Namata, M. Bilgic, et al., “Collective classification in network data”, AI Magazine, Vol.29, No.3, pp.93-106, 2008.
    E. Desmier, M. Plantevit, C. Robardet, et al., “Cohesive coevolution patterns in dynamic attributed graphs”, Proc. of International Conference on Discovery Science, Lyon, France, pp.110-124, 2012.
    L. Nachmanson, R. Prutkin, B. Lee, et al., “GraphMaps: Browsing large graphs as interactive maps”, Proc. of International Symposium on Graph Drawing and Network Visualization, Los Angeles, California, USA, pp.3-15, 2015.
    L. Shi, Q. Liao, H. Tong, et al., “Hierarchical focus+context heterogeneous network visualization”, Proc. of IEEE Pacific Visualization Symposium, PacificVis, Yokohama, Japan, pp.89-96, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (166) PDF downloads(258) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return