Citation: | LAI Yuping, PING Yuan, HE Wenda, WANG Baocheng, WANG Jingzhong, ZHANG Xiufeng. Variational Bayesian Inference for Finite Inverted Dirichlet Mixture Model and Its Application to Object Detection[J]. Chinese Journal of Electronics, 2018, 27(3): 603-610. doi: 10.1049/cje.2018.03.003 |
G.J. Mclachlan and D. Peel, Finite Mixture Models, Wiley, New York, USA, 2000.
|
C.M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, USA, 2006.
|
D.A. Reynolds and R.C. Rose, "Robust text-independent speaker identification using gaussian mixture speaker models", IEEE Transactions on Speech and Audio Processing, Vol.3, No.1, pp.72-83, 1995.
|
Z. Ma, S. Chatterjee, W. Bastiaan Kleijn, et al., "Dirichlet mixture modeling to estimate an empirical lower bound for LSF quantization", Signal Processing, Vol.104, No.6, pp.291-295, 2014.
|
W. Fan, N. Bouguila and D. Ziou, "Variational learning for finite dirichlet mixture models and applications", IEEE Transactions on Neural Networks and Learning Systems, Vol.23, No.5, pp.762-774, 2012.
|
Z. Ma, A. Leijon and W.B. Kleijn, "Vector quantization of LSF parameters with a mixture of dirichlet distributions", IEEE Transactions on Audio Speech and Language Processing, Vol.21, No.9, pp.1777-1790, 2013.
|
Z. Ma, J. Taghia, W.B. Kleijn, et al., "Line spectral frequencies modeling by a mixture of von mises-fisher distributions", Signal Processing, Vol.114, No.C, pp.219-224, 2015.
|
Z. Ma, J.H. Xue, A. Leijon, et al., "Decorrelation of neutral vector variables:Theory and applications.", IEEE Transactions on Neural Networks and Learning Systems, Vol.PP, No.99, pp.1-15, 2017.
|
T.M. Nguyen, Q.M. Wu, D. Mukherjee, et al., "A Bayesian bounded asymmetric mixture model with segmentation application", IEEE Journal of Biomedical and Health Informatics, Vol.18, No.1, pp.109-119, 2014.
|
Z.R. Yang and M. Zwolinski, "Mutual information theory for adaptive mixture models", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.23, No.4, pp.396-403, 2001.
|
M.A.T. Figueiredo and A.K. Jain, " Unsupervised learning of finite mixture models", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.3, pp.381-396, 2002.
|
C. Constantinopoulos, M.K. Titsias and A. Likas, "Bayesian feature and model selection for gaussian mixture models", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.28, No.6, pp.1013-1018, 2006.
|
Z. Ma and A. Leijon, "Bayesian estimation of beta mixture models with variational inference", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.33, No.11, pp.2160-2173, 2011.
|
N. Bouguila and D. Ziou, "High-dimensional unsupervised selection and estimation of a finite generalized dirichlet mixture model based on minimum message length", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.29, No.10, pp.1716-1731, 2007.
|
W. Fan and N. Bouguila, "Variational learning of finite betaliouville mixture models using component splitting", International Joint Conference on Neural Networks (IJCNN), Dallas, USA, pp.1-8, 2013.
|
N. Bouguila, D. Ziou and E. Monga, "Practical Bayesian estimation of a finite beta mixture through gibbs sampling and its applications", Statistics and Computing, Vol.16, No.2, pp.215-225, 2006.
|
P.D. Nwald, The Minimum Description Length Principle, MIT Press, USA, 2007.
|
H. Akaike, "A new look at the statistical model identification", IEEE Transactions on Automatic Control, Vol.19, No.6, pp.716-723, 1974.
|
G. Schwarz, "Estimating the dimension of a model", Annals of Statistics, Vol.6, No.2, pp.461-464, 1978.
|
P. Bunch, J. Murphy and S. Godsill, "Bayesian learning of degenerate linear Gaussian state space models using Markov chain Monte carlo", IEEE Transactions on Signal Processing, Vol.64, No.16, pp.4100-4112, 2016.
|
M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, et al., "An introduction to variational methods for graphical models", Machine Learning, Vol.37, No.2, pp.183-233, 1999.
|
H. Attias, "A variational Bayesian framework for graphical models", Annual Conference on Neural Information Processing Systems (NIPS), Denver, USA, pp.209-215, 2000.
|
Z. Ma, A.E. Teschendorff, A. Leijon, et al., "Variational Bayesian matrix factorization for bounded support data", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.37, No.4, pp.876-889, 2015.
|
Z. Ma, P.K. Rana, J. Taghia, et al., "Bayesian estimation of Dirichlet mixture model with variational inference", Pattern Recognition, Vol.47, No.9, pp.3143-3157, 2014.
|
G.G. Tiao and I. Cuttman, "The inverted dirichlet distribution with applications", Journal of the American Statistical Association, Vol.60, No.311, pp.793-805, 1965.
|
T. Bdiri and N. Bouguila, "Positive vectors clustering using inverted Dirichlet finite mixture models", Expert Systems with Applications, Vol.39, No.2, pp.1869-1882, 2012.
|
A. Corduneanu and C.M. Bishop, "Variational Bayesian model selection for mixture distributions", International Conference on Artificial Intelligence and Statistics (AISTATS), Key West, USA, pp.27-34, 2001.
|
M.D. Hoffman, D.M. Blei and P.R. Cook, "Bayesian nonparametric matrix factorization for recorded music", International Conference on Machine Learning (ICML), Haifa, Israel, pp.439-446, 2010.
|
R. Ksantini, D. Ziou, B. Colin, et al., "Weighted pseudometric discriminatory power improvement using a bayesian logistic regression model based on a variational method", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.30, No.2, pp.253-266, 2008.
|
G. Parisi, Statistical Field Theory, Addison-Wesley, Redwood City, USA, 1988.
|
Z. Liang, H. Wang, D. Tao, et al., "Improving integrality of detected moving objects based on image matting", Chinese Journal of Electronics, Vol.23, No.4, pp.742-746, 2014.
|
S. Zhu, D.U. Junping, N. Ren, et al., "Hierarchical-based object detection with improved locality sparse coding", Chinese Journal of Electronics, Vol.25, No.2, pp.290-295, 2016.
|
Y. Pang, J. Cao and X. Li, "Learning sampling distributions for efficient object detection", IEEE Transactions on Cybernetics, Vol.47, No.1, pp.117-129, 2016.
|
O. Ludwig, D. Delgado, V. Goncalves, et al., "Trainable classifier-fusion schemes:An application to pedestrian detection", International IEEE Conference on Intelligent Transportation Systems (ITSC), St. Louis, USA, pp.1-6, 2009.
|
E. Borenstein and S. Ullman, "Learning to segment", European Conference on Computer Vision (ECCV), Prague, Czech Republic, pp.315-328, 2004.
|