Citation: | LI Kai and GAO Yan, “Fuzzy Clustering with the Structural α-Entropy,” Chinese Journal of Electronics, vol. 27, no. 6, pp. 1118-1125, 2018, doi: 10.1049/cje.2018.04.004 |
K.A. Jain, “Data clustering: 50 years beyond k-means”, Pattern Recognition Letters, Vol.31, No.8, pp.651-666, 2010.
|
H.J. Jia, S.F. Ding, M.J. Du, et al., “Approximate normalized cuts without eigen-decomposition”, Information Sciences, Vol.374, pp.135-150, 2016.
|
S.F. Ding, J. Zhang, H.J. Jia, et al., “An adaptive density data stream clustering algorithm”, Cognitive Computation, Vol.8, No.1, pp.30-38, 2016.
|
J. Zhou, L. Chen, C.L.P. Chen, et al., “Fuzzy clustering with the entropy of attribute weights”, Neurocomputing, Vol.198, pp.125-34, 2016.
|
M.J. Du, S.F. Ding and Y. Xue, “A robust density peaks clustering algorithm using fuzzy neighborhood”, International Journal of Machine Learning and Cybernetics, DOI: 10.1007/s13042-017-0636-1, 2017.
|
J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, USA, pp.65-80, 1981.
|
S.F. Ding, M.J. Du and H. Zhu, “Survey on granularity clustering”, Cognitive Neurodynamics, Vol.9, No.6, pp.561-572, 2015.
|
N.B. Karayiannis, “MECA: Maximum entropy clustering algorithm”, Proc. of IEEE World Congress on Computational Intelligence, Orlando, USA, pp.630-635, 1994.
|
R.P. Li and M. Mukaidon, “A maximum entropy approach to fuzzy clustering”, Proc. of IEEE International Conference on Fuzzy System, Yokohama, Japan, Vol.4, pp.2227-2232, 1995.
|
D. Tran and M. Wagner, “Fuzzy entropy clustering”, Proc. of The Ninth IEEE International Conference on Fuzzy Systems, San Antonio, USA, Vol.1, pp.152-157, 2000.
|
S.F. Ding, M.J. Du, T.F. Sun, et al., “An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood”, Knowledge-Based Systems, Vol.133, No.1, pp.294-313, 2017.
|
J. Yu, Q.S. Cheng and H.K. Huang, “Analysis of the weighting exponent in the FCM”, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol.34, No.1, pp.634-639, 2004.
|
W. Pedrycz, A. Amato, V.D. Lecce, et al., “Fuzzy clustering with partial supervision in organization and classification of digital images”, IEEE Transactions on Fuzzy Systems, Vol.16, No.4, pp.1008-1026, 2008.
|
C. Wei and C. Fahn, “The multisynapse neural network and its application to fuzzy clustering”, IEEE Transactions on Neural Networks, Vol.13, No.3, pp.600-618, 2002.
|
J. Yu and P.W. Hao, “Comments on the multisynapse neural network and its application to fuzzy clustering”, IEEE Transaction on Neural Networks, Vol.16, No.3, pp.777-778, 2005.
|
K. Mizutani and S. Miyamoto, “Possibilistic approach to kernelbased fuzzy c-means clustering with entropy regularization”, Second International Conference on Modeling Decisions for Artificial Intelligence, Tsukuba, Japan, Vol.3558, pp.144-155, 2005.
|
D. Graves and W. Pedrycz, “Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study”, Fuzzy Sets and Systems, Vol.161, No.4, pp.522-543, 2010.
|
D. Swagatam and S. Sudeshna, “Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm”, Information Sciences, Vol.180, pp.1237-1256, 2010.
|
S.R. Kannan, S. Ramathilagam, A. Stthya, et al., “Effective fuzzy c-means based kernel function in segmenting medical images”, Computers in Biology and Medicine, Vol.40, No.6, pp.572-579, 2010.
|
R.P.F. Marcelo and D.A.T. Francisco, “Kernel-based hard clustering methods in the feature space with automatic variable weighting”, Pattern Recognition, Vol.47, No.9, pp.3082-3095, 2014.
|
R.P.F. Marcelo, D.A.T. Francisco and C.S. Eduardo, “Kernelbased hard clustering methods with kernelization of the metric and automatic weighting of the variables”, Pattern Recognition, Vol.51, pp.310-321, 2016.
|
A. Renyi, “On measures of entropy and information”, Proc. of the Fourth Berkeley Symposium on Mathematics Statistics and Probability, Berkeley, USA, Vol.1, pp.547-561, 1961.
|
J.N. Kapur, “Generalised entropy of order α and β”, The Mathematics Seminar, Vol.4, pp.78-94, 1967.
|
J. Havrda and F. Charvat, “Quantification method of classification processes: Concept of structural α-entropy”, Kybernetika, Vol.3, No.4, pp.30-35, 1967.
|
D. Dua and E. Karra Taniskidou, “UCI Machine Learning Repository”, http://archive.ics.uci.edu/ml, Irvine, School of Information and Computer Science, CA: University of California, 2017-2-20.
|