Citation: | SHAN Zhenyu, PAN Zhigeng, LI Fengwei, et al. “Visual Analytics of Traffic Congestion Propagation Path with Large Scale Camera Data”. Chinese Journal of Electronics, vol. 27 no. 5. doi: 10.1049/cje.2018.04.011 |
Y. Xu, Y. Wu, J. Xu, et al., “Efficient detection scheme for urban traffic congestion using buses”, Proc. of Advanced Information Networking and Applications Workshops (WAINA), 26th International Conference, Cracow, Poland, pp.287-293, 2012.
|
H. Taale, P.H.G. van Bekkum and M.L.D. van Rij, “Evaluation of traffic management by the traffic police”, Proc. of IEE International Conference on Road Transport Information and Control, Shanghai, China, pp.106-111, 2004.
|
Z.M. Fan, J. Zhou and D.S. Gao, “A robust algorithm of contour extraction for vehicle tracking”, Chinese Journal of Electronics, Vol.12, No.3, pp.358-361, 2003.
|
P.L. Wu, Y. Tan, J. Zheng, et al., “A hybrid compression framework for large scale trajectory data in road networks”, Chinese Journal of Electronics, Vol.24, No.4, pp.730-739, 2015.
|
C. Nanthawichit, T. Nakatsuji, Associate Professor, et al., “Application of probe-vehicle data for real-time traffic-state estimation and short-term travel-time prediction on a freeway”, Transportation Research Record Journal of the Transportation Research Board, Vol.1855, No.1, pp.430-431, 2003.
|
Q. Yang, C.M. Wu, B. Wang, et al., “Real-time service level agreement guarantees under network topological and traffic uncertainties”, Chinese Journal of Electronics, Vol.21, No.2, pp.323-326, 2012.
|
X. Jiang, Y. Tian, L. Jiang, et al., “Visual analytics of urban road transportation data: A survey”, Journal of Image & Graphics, Vol.2015, 14 pages, 2015.
|
Andrienko, Gennady and Natalia Andrienko, “Spatio-temporal aggregation for visual analysis of movements”, Proc. of IEEE Symposium on Visual Analytics Science and Technology, Columbus, USA, pp.51-58, 2008.
|
C. Tominski, N. Andrienko, N. Andrienko, et al., “Stackingbased visualization of trajectory attribute data”, IEEE Transactions on Visualization & Computer Graphics, Vol.18, No.12, pp.2565-2574, 2012.
|
G. Andrienko and N. Andrienko, “Poster: Dynamic time transformation for interpreting clusters of trajectories with spacetime cube”, Proc. of IEEE Symposium on Visual Analytics Science and Technology, Salt Lake City, Utah, USA, pp.213-214, 2010.
|
S. Liu, C. Liu, Q. Luo, et al., “A visual analytics system for metropolitan transportation”, Proc. of ACM Sigspatial International Symposium on Advances in Geographic Information Systems, Acm-Gis 2011, Chicago, USA, pp.477-480, 2011.
|
M. Vandaniker, “Visualizing real-time and archived traffic incident data”, Proc. of IEEE International Conference on Information Reuse & Integration IEEE Press, Las Vegas, Nevada, USA, pp.206-211, 2009.
|
M.L. Pack, K. Wongsuphasawat, M. Vandaniker, et al., “ICE-visual analytics for transportation incident datasets”, Proc. of IEEE International Conference on Information Reuse & Integration IEEE, Las Vegas, Nevada, USA, pp.200-205, 2009.
|
G. Andrienko, N. Andrienko, C. Hurter, et al., “From movement tracks through events to places: Extracting and characterizing significant places from mobility data”, Proc. of Visual Analytics Science and Technology IEEE, Columbus, Ohio, USA, pp.161-170, 2011.
|
G. Andrienko, N. Andrienko, C. Hurter, et al., “Scalable analysis of movement data for extracting and exploring significant places”, IEEE Transactions on Visualization & Computer Graphics, Vol.19, No.7, pp.1078-1094, 2013.
|
G. Andrienko and N. Andrienko, “Poster: Dynamic time transformation for interpreting clusters of trajectories with spacetime cube”, Proc. of Visual Analytics Science and Technology, Salt Lake City, Utah, USA, pp.213-214, 2010.
|
Z. Wang, M. Lu, X. Yuan, et al., “Visual traffic jam analysis based on trajectory data”, IEEE Transactions on Visualization & Computer Graphics, Vol.19, No.12, pp.2159-2168, 2013.
|
S. Yang, “On feature selection for traffic congestion prediction”, Transportation Research Part C Emerging Technologies, Vol.26, No.1, pp.160-169, 2013.
|
B.J. Gajewski and L.R. Rilett, “Estimating link travel time correlation: An application of Bayesian smoothing splines”, Journal of Transportation & Statistics, Vol.7, No.2, p.53-70, 2005.
|
E. Jenelius and H.N. Koutsopoulos, “Travel time estimation for urban road networks using low frequency probe vehicle data”, Transportation Research Part B Methodological, Vol.53, No.4, pp.64-81, 2013.
|
T. Nagatani, “Propagation of jams in congested traffic flow”, Journal of the Physical Society of Japan, Vol.65, No.7, pp.2333-2336, 1996.
|
J.C. Long and Z.Y. Gao, “Urban traffic congestion propagation and bottleneck identification”, Science in China, Vol.51, No.7, pp.948, 2008.
|
Y. Wang, J. Cao, W. Li, et al., “Mining traffic congestion correlation between road segments on GPS trajectories”, Proc. of IEEE International Conference on Smart Computing, Shenzhen, China, pp.1-8, 2016.
|
H. Nguyen, W. Liu, F. Chen, “Discovering congestion propagation patterns in spatio-temporal traffic data”, IEEE Transactions on Big Data, Vol.3, No.2, pp.169-180, 2017.
|
S. Skiena, Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, Cambridge University Press, Vol.1992, pp.286-288, 1992.
|
Y. Wang and M. Papageorgiou, “Real-time freeway traffic state estimation based on extended Kalman filter: a general approach”, Transportation Research Part B Methodological, Vol.39, No.2, pp.141-167, 2005.
|
M.J. Lighthill and G.B. Whitham, “On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads”, Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, Vol.229, No.1178, pp.317-345, 1955.
|
Z. Shan, D. Zhao and Y. Xia, “Urban road traffic speed estimation for missing probe vehicle data based on multiple linear regression model”, Proc. of Intelligent Transportation Systems-(ITSC), 201316th International IEEE Conference, Hague, Netherlands, pp.118-123, 2013.
|
DB33/T 998:2016, Zhejiang Provincial Administration of Quality and Technology Supervision, Specification for Urban Road Traffic Performance Evaluation.
|
P.S. Sandhu, S. Kumar and H. Singh, “Intelligence system for software maintenance severity prediction”, Journal of Computer Science, Vol.3, No.5, 2007.
|