Citation: | ZHANG Ming, GU Zonghua, PAN Gang, “A Survey of Neuromorphic Computing Based on Spiking Neural Networks,” Chinese Journal of Electronics, vol. 27, no. 4, pp. 667-674, 2018, doi: 10.1049/cje.2018.05.006 |
H. Esmaeilzadeh, E. Blem, R.S. Amant, et al., "Power challenges may end the multicore era", Commun. ACM, Vol.56, No.2, pp.93-102, 2013.
|
R. Colwell, "The chip design game at the end of Moores law", IEEE Hot Chips 25 Symposium (HCS), pp.1-16, 1990.
|
K. Grace, "Brain performance in TEPS", http://aiimpacts.org/brain-performance-in-teps/, 2015-5-6.
|
Sze V, Chen Y H, Yang T J, et al., "Efficient processing of deep neural networks:A tutorial and survey", arXiv preprint arXiv:1703.09039, https://arxiv.org/abs/1703.09039, 2017.
|
Z. Wu, Y. Zhou, Z. Shi, et al., "Cyborg intelligence:Recent progresses and future directions", IEEE Intelligent Systems, Vol.31, No.6, pp.44-50, 2016.
|
Y. Wang, M. Lu, Z. Wu, et al., "Visual cue-guided rat cyborg for automatic navigation", IEEE Computational Intelligence Magazine, Vol.10, No.2, pp.42-52, 2015.
|
D. Ma, J. Shen, Z. Gu, et al., "Darwin:A neuromorphic hardware co-processor based on spiking neural networks", Journal of Systems Architecture-Embedded Systems Design, Vol.77, pp.43-51, 2017.
|
A. Andreopoulos, B. Taba, A.S. Cassidy, et al., "Visual saliency on networks of neurosynaptic cores", IBM J. Res. Dev., Vol.59, No.2/3, pp.1-9, 2015.
|
E.M. Izhikevich, "Which model to use for cortical spiking neurons?", IEEE Trans. Neural Networks, Vol.15, No.5, pp.1063-1070, 2004.
|
P. Dayan and L.F. Abbott, Theoretical Neuroscience, MIT Press, Cambridge, MA, USA, 2001.
|
T. Masquelier, R. Guyonneau and S.J. Thorpe, "Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains", PLoS One, Vol.3, No.1, doi:10.1371/journal.pone.0001377, 2008.
|
R. Brette and W. Gerstner, "Adaptive exponential integrateand-fire model as an effective description of neuronal activity", J. Neurophysiol., Vol.94, No.5, pp.3637-3642, 2005.
|
T. Dettmers, "The Brain vs Deep Learning", http://timdettmers.com/2015/07/27/brain-vs-deep-learningsingularity/, 2015-7-27.
|
S.M. Bohte, J.N. Kok and H. La Poutré, "SpikeProp:Backpropagation for networks of spiking neurons", Proc. of 8th European Symposium on Artificial Neural Networks, pp.419-425, 2000.
|
R. Gütig and H. Sompolinsky, "The tempotron:A neuron that learns spike timing-based decisions", Nat. Neurosci., Vol.9, No.3, pp.420-428, 2006.
|
F. Ponulak and A. Kasiński, "Supervised learning in spiking neural networks with ReSuMe:Sequence learning, classification, and spike shifting", Neural Comput., Vol.22, No.2, pp.467-510, 2010.
|
R.V. Florian, "The chronotron:A neuron that learns to fire temporally precise spike patterns", PLoS One, Vol.7, No.8, doi:10.1371/journal.pone.0040233, 2012.
|
A. Mohemmed, S. Schliebs, S. Matsuda, et al., "Span:Spike pattern association neuron for learning spatio-temporal spike patterns", Int. J. Neural Syst., Vol.22, No.04, Artical ID 1250012, 17 pages, 2012.
|
Q. Yu, H. Tang, K.C. Tan, et al., "Precise-spike-driven synaptic plasticity:Learning hetero-association of spatiotemporal spike patterns", PLoS One, Vol.8, No.11, doi:10.1371/journal.pone.0078318, 2013.
|
P.U. Diehl, D. Neil, J. Binas, et al., "Fast-classifying, highaccuracy spiking deep networks through weight and threshold balancing", International Joint Conference on Neural Networks (IJCNN), pp.1-8, 2015.
|
Y. Cao, Y. Chen and D. Khosla, "Spiking deep convolutional neural networks for energy-efficient object recognition", Int. J. Comput. Vis., Vol.113, No.1, pp.54-66, 2015.
|
D. Neil and S.-C. Liu, "Minitaur, an event-driven FPGA-based spiking network accelerator", IEEE Trans. Very Large Scale Integr. Syst., Vol.22, No.12, pp.2621-2628, 2014.
|
W. Maass, T. Natschläger and H. Markram, "Real-time computing without stable states:A new framework for neural computation based on perturbations", Neural Comput., Vol.14, No.11, pp.2531-2560, 2002.
|
S.B. Furber, F. Galluppi, S. Temple, et al., "The spinnaker project", Proc. IEEE, Vol.102, No.5, pp.652-665, 2014.
|
P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, et al., "A million spiking-neuron integrated circuit with a scalable communication network and interface", Science, Vol.345, No.6197, pp.668-673, 2014.
|
J.M. Cruz-Albrecht, T. Derosier and N. Srinivasa, "A scalable neural chip with synaptic electronics using CMOS integrated memristors", Nanotechnology, Vol.24, No.38, Artical ID 384011, 11 pages, 2013.
|
J. Schemmel, D. Briiderle, A. Griibl, et al., "A wafer-scale neuromorphic hardware system for large-scale neural modeling", Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp.1947-1950, 2010.
|
B.V. Benjamin, P. Gao, E. McQuinn, et al., "Neurogrid:A mixed-analog-digital multichip system for large-scale neural simulations", Proc. IEEE, Vol.102, No.5, pp.699-716, 2014.
|
S. Moradi and G. Indiveri, "An event-based neural network architecture with an asynchronous programmable synaptic memory", IEEE Trans. Biomed. Circuits Syst., Vol.8, No.1, pp.98-107, 2014.
|
S.W. Moore, P.J. Fox, S.J.T. Marsh, et al., "Bluehive-A fieldprogramable custom computing machine for extreme-scale realtime neural network simulation", IEEE 20th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp.133-140, 2012.
|
S. Pande, F. Morgan, G. Smit, et al., "Fixed latency on-chip interconnect for hardware spiking neural network architectures", Parallel Comput., Vol.39, No.9, pp.357-371, 2013.
|
J. Park, S. Ha, T. Yu, et al., "A 65k-neuron 73-Mevents/s 22-pJ/event asynchronous micro-pipelined integrate-and-fire array transceiver", IEEE Biomedical Circuits and Systems Conference (BioCAS), pp.675-678, 2014.
|
L. Shi, J. Pei, N. Deng, et al., "Development of a neuromorphic computing system", IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, pp.4.3.1-4.3.4, 2015.
|
J. Shen, D. Ma, Z. Gu, et al., "Darwin:A neuromorphic hardware co-processor based on spiking neural networks", Science China Information Sciences, Vol.59, No.2, pp.1-5, 2016.
|
D. Ma, J. Shen, Z. Gu, et al., "Darwin:A neuromorphic hardware co-processor based on spiking neural networks", Journal of Systems Architecture, Vol.77, pp.43-51, 2017.
|
D. Seo, J.M. Carmena, J.M. Rabaey, et al., "Neural dust:An ultrasonic, low power solution for chronic brain-machine interfaces", arXiv preprint arXiv:1307.2196, 2013.
|
R.J. Vogelstein, F.V.G. Tenore, L. Guevremont, et al., "A silicon central pattern generator controls locomotion in vivo", IEEE Trans. Biomed. Circuits Syst., Vol.2, No.3, pp.212-222, 2008.
|
J. Dethier, P. Nuyujukian, S.I. Ryu, et al., "Design and validation of a real-time spiking-neural-network decoder for brainmachine interfaces", J. Neural Eng., Vol.10, No.3, Artical ID 036008, 25 pages, 2013.
|
C. Eliasmith and C.H. Anderson, Neural Engineering:Computation, Representation, and Dynamics in Neurobiological Systems, MIT Press, London, England, 2004.
|
V.S. Ghaderi, D. Song, J. Choma, et al., "Nonlinear cognitive signal processing in ultralow-power programmable analog hardware", IEEE Trans. Circuits Syst. Ⅱ Express Briefs, Vol.62, No.2, pp.124-128, 2015.
|
S.-C. Liu and T. Delbruck, "Neuromorphic sensory systems", Curr. Opin. Neurobiol., Vol.20, No.3, pp.288-295, 2010.
|
C. Farabet, B. Martini, B. Corda, et al., "Neuflow:A runtime reconfigurable dataflow processor for vision", IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.109-116, 2011.
|
Du Z, Liu S, Fasthuber R, et al., "An accelerator for high efficient vision processing". IEEE Transactions on ComputerAided Design of Integrated Circuits and Systems, Vol.36, No.2, pp.227-240, 2017.
|