ZHANG Sen, ZHOU Yongquan. Grey Wolf Optimizer with Ranking-Based Mutation Operator for IIR Model Identification[J]. Chinese Journal of Electronics, 2018, 27(5): 1071-1079. doi: 10.1049/cje.2018.06.008
Citation: ZHANG Sen, ZHOU Yongquan. Grey Wolf Optimizer with Ranking-Based Mutation Operator for IIR Model Identification[J]. Chinese Journal of Electronics, 2018, 27(5): 1071-1079. doi: 10.1049/cje.2018.06.008

Grey Wolf Optimizer with Ranking-Based Mutation Operator for IIR Model Identification

doi: 10.1049/cje.2018.06.008
Funds:  This work is supported by the National Natural Science Foundation of China (No.61463007, No.61563008).
More Information
  • Corresponding author: ZHOU Yongquan (corresponding author) received the M.S. degree in computer science from Lanzhou University, Lanzhou, China, in 1993 and the Ph.D. degree in computation intelligence from the Xidian University, Xi'an, China, in 2006. He is currently a professor at Guangxi University for Nationalities. His research interests include computation intelligence, neural networks, and intelligence information processing. (Email:yongquanzhou@126.com)
  • Received Date: 2016-01-22
  • Rev Recd Date: 2016-05-23
  • Publish Date: 2018-09-10
  • A variant of Grey wolf optimizer (GWO), called grey wolf optimizer with Ranking-based mutation operator (RGWO) is applied to the Infinite impulse response (ⅡR) system identification problem. RGWO makes GWO faster and more robust. In RGWO, the rankingbased mutation operator is integrated into the GWO to accelerate the convergence speed, and thus enhance the performance. The simulation results over several models are presented and statistically validated. Compared to other robust evolutionary algorithms, RGWO performs significantly better in terms of the quality, speed, and the stability of the final solutions.
  • loading
  • X.J. Zhou, C.H. Yang and W.H. Gui, “Nonlinear system identification and control using state transition algorithm”, Applied Mathematics and Computation, Vol.226, No.1, pp.169-179, 2014.
    M. Albaghdadi, B. Briley and M. Evens, “Event storm detection and identification in communication systems”, Reliability Engineering and System Safety, Vol.91, No.5, pp.602-613, 2006.
    P.F. Pai, B.A. Nguyen and M.J. Sundaresan, “Nonlinearity identification by time-domain-only signal processing”, International Journal of Non-Linear Mechanics, Vol.54, No.3, pp.85-98, 2013
    H.C. Chung, J. Liang, S. Kushiyama, et al., “Digital image processing for non-linear system identification”, International Journal of Non-linear Mechanics, Vol.39, No.5, pp.691-707, 2004.
    T. Mostajabi, J. Poshtan and Z. Mostajabi, “ⅡR model identification via evolutionary algorithms”, Artificial Intelligence Review, Vol.44, No.1, pp.87-101, 2013.
    C.H. Dai, W.R. Chen and Y.F. Zhu, “Seeker optimization algorithm for digital ⅡR filter design”, IEEE Transactions on Industrial Electronics, Vol.57, No.5, pp.1710-1718, 2010.
    G. Panda, P.M. Pradhan and B. Majhi, “ⅡR system identification using cat swarm optimization”, Expert Systems with Applications, Vol.38, No.10, pp.12671-12683, 2011.
    J. Kennedy and R. Eberhar, “Particle swarm optimization”, Proc. of IEEE International Conference on Neural Networks, pp.1942-1948, 1995.
    D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm”, Journal of Global Optimization, Vol.39, No.3, pp.459-471, 2007.
    X.S. Yang and S. Deb, “Cuckoo search via Lévy flights”, Proc. of IEEE World Congress on Nature and Biologically Inspired Computing, Coimbatore, India, pp.210-214, 2009.
    X.S. Yang, “Flower pollination algorithm for global optimization”, Unconventional Computation and Natural Computation, Springer Berlin Heidelberg, pp.240-249, 2012.
    W. Fang, J. Sun and W.B. Xu, “A new mutated quantumbehaved particle swarm optimizer for digital ⅡR filter design”, Eurasip Journal on Advances in Signal Processing, Vol.2009, No.1, pp.1-7, 2009.
    S. Chen and B.L. Luk, “Digital ⅡR filter design using particle swarm optimization”, International Journal of Modelling, Identification and Control, Vol.9, No.4, pp.327-335, 2010.
    N. Karaboga, “A new design method based on artificial bee colony algorithm for digital ⅡR filters”, Journal of the Franklin Institute, Vol.346, No.4, pp.328-348, 2009.
    E. Cuevas and D. Oliva, “ⅡR filter modeling using an algorithm inspired on electromagnetism”, Ingeniería Investigación y Tecnología, Vol.14, No.1, pp.125-138, 2013.
    A.P. Patwardhan, R. Patidar and N.V. George, “On a cuckoo search optimization approach towards feedback system identification”, Digital Signal Processing, Vol.32, No.2, pp.156-163, 2014.
    D.H. Wolpert and W.G. Macready, “No free lunch theorems for optimization”, IEEE Transactions on Evolutionary Computation, Vol.1, No.1, pp.67-82, 1997.
    S. Mirjalili, S.M. Mirjalili and A. Lewis, “Grey wolf optimizer”, Advances in Engineering Software, Vol.69, No.3, pp.46-61, 2014.
    M.H. Sulaiman, Z. Mustaffa, M.R. Mohamed, et al., “Using the gray wolf optimizer for solving optimal reactive power dispatch problem”, Applied Soft Computing, Vol.32, No.C, pp.286-292, 2015.
    X.H. Song, L. Tang, S.T. Zhao, et al., “Grey wolf optimizer for parameter estimation in surface waves”, Soil Dynamics and Earthquake Engineering, Vol.75, No.2015, pp.147-157, 2015.
    G.M. Komaki and V. Kayvanfar, “Grey wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time”, Journal of Computational Science, Vol.8, pp.109-120, 2015.
    S.A. Medjahed, T.A. Saadi, A. Benyettou, et al., “Gray wolf optimizer for hyperspectral band selection”, Applied Soft Computing, Vol.40, No.C, pp.178-186, 2016.
    E. Emary, W. Yamany, A.E. Hassanien, et al., “Multi-objective gray-wolf optimization for attribute reduction”, Procedia Computer Science, Vol.65, pp.623-632, 2015.
    E. Emary, H.M. Zawbaa and A.E. Hassanien, “Binary grey wolf optimization approaches for feature selection”, Neurocomputing, Vol.172, No.C, pp.371-381, 2016.
    S.C. Satapathy, A. Naik and K. Parvathi, “A teaching learning based optimization based on orthogonal design for solving global optimization problems”, SpringerPlus, Vol.2, No.1, p.130, 2013.
    W.Y. Gong and Z.H. Cai, “Differential evolution with rankingbased mutation operators”, IEEE Transactions on Cybernetics, Vol.43, No.6, pp.2066-2081, 2013.
    W.Y. Gong, Z.H. Cai and D.W. Liang, “Engineering optimization by means of an improved constrained differential evolution”, Computer Methods in Applied Mechanics and Engineering, Vol.268, No.4, pp.884-904, 2014.
    O. Kukrer, “Analysis of the dynamics of a memoryless nonlinear gradient ⅡR adaptive notch filter”, Signal Processing, Vol.91, No.10, pp.2379-2394, 2011.
    E. Cuevas, J. Gálvez, S. Hinojosa, et al., “A comparison of evolutionary computation techniques for ⅡR model identification”, Journal of Applied Mathematics, Vol.2014, No.2014, pp.1-15, DOI: 10.1155/2014/827206, 2014.
    R.G. Reynolds, “An introduction to cultural algorithms”, Proc. of the 3rd Annual Conference on Evolutionary Programming, River Edge, NJ, World Scientific, Singapore, pp.131-139, 1994.
    X.B. Meng, X.Z. Gao, Y. Liu, et al., “A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization”, Expert Systems with Applications, Vol.42, No.17, pp.6350-6364, 2015.
    B. Li, Y. Li and L.G. Gong, “Protein secondary structure optimization using an improved artificial bee colony algorithm based on AB off-lattice model”, Engineering Applications of Artificial Intelligence, Vol.27, No.1, pp.70-79, 2014.
    E. Rashedi, H. Nezamabadi-Pour and S. Saryazdi, “GSA: A gravitational search algorithm”, Information Sciences, Vol.179, No.13, pp.2232-2248, 2009.
    J. Derrac, S. García, D. Molina, et al., “A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms”, Swarm and Evolutionary Computation, Vol.1, No.1, pp.3-18, 2011.
    J.D. Gibbons and S. Chakraborti, Nonparametric Statistical Inference, Springer Berlin Heidelberg, pp.977-979, 2011.
    M. Hollander, D.A. Wolfe and E. Chicken, Nonparametric Statistical Methods, John Wiley & Sons, New York, USA, 2013.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (128) PDF downloads(200) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint