MEI Honghui, GUO Fangzhou, CHEN Haidong, CHEN Yi, CHEN Wei. Visual Exploration of Differences Among DTI Fiber Models[J]. Chinese Journal of Electronics, 2018, 27(5): 959-967. doi: 10.1049/cje.2018.06.015
Citation: MEI Honghui, GUO Fangzhou, CHEN Haidong, CHEN Yi, CHEN Wei. Visual Exploration of Differences Among DTI Fiber Models[J]. Chinese Journal of Electronics, 2018, 27(5): 959-967. doi: 10.1049/cje.2018.06.015

Visual Exploration of Differences Among DTI Fiber Models

doi: 10.1049/cje.2018.06.015
Funds:  This work is supported by National 973 Program of China (No.2015CB352503), Major Program of National Natural Science Foundation of China (No.61232012), National Natural Science Foundation of China (No.61422211, No.61772456), and Open Project Program of Beijing Key Laboratory of Big Data Technology for Food Safety (No.BKBD-2017KF03).
More Information
  • Corresponding author: CHEN Wei (corresponding author) received the Ph.D. degree in Fraunhofer Institute for Graphics, Darmstadt, Germany, in 2002. He is a professor in State Key Lab of CAD & CG, Zhejiang University, China. From 2006 to 2008, he was a visiting scholar at Purdue University. His current research interests include visualization and visual analytics. He is a member of the IEEE. (Email:chenwei@cad.zju.edu.cn)
  • Received Date: 2017-01-16
  • Rev Recd Date: 2017-09-20
  • Publish Date: 2018-09-10
  • In-vivo studies of fibrous structures require non-invasive tools, of which one is fiber tracking based on Diffusion tensor imaging (DTI) datasets. Different fiber models can be produced from different DTI images, which may vary from subject to subject due to variations in anatomy, motions in scanning, and signal noises. Additionally, parameters of the tracking method also have a great influence on resulting models. Illustrating, exploring, and analyzing differences among DTI fiber models are crucial for the purposes of group comparison, atlas construction, and uncertainty analysis. Conventional approaches illustrate fiber models in 3D space and explore differences either voxel-wisely or fiber-based. However, these approaches rely on accurate alignment processes and may easily be disturbed by visual clutters. We introduce a two-phase projection technique to illustrate a complex 3D fiber model with a unique 2D map to characterize features for further exploration and analysis. Moreover, regions of significant differences among the maps are marked out. In these 2D maps, differences can be easily distinguished without occlusions that often occur in 3D spaces. To facilitate comparative analysis from multiple perspectives, we design an interface for interactive exploration. The effectiveness of our approach is evaluated with two datasets.
  • loading
  • P.J. Basser and C. Pierpaoli, “A simplified method to measure the diffusion tensor from seven MR images”, Magnetic Resonance in Medicine, Vol.39, No.6, pp.928-934, 1998.
    P. Hagmann, L. Jonasson, P. Maeder, et al., “Understanding diffusion MR imaging techniques: From scalar diffusion-weighted imaging to diffusion tensor imaging and beyond”, Radiographics, Vol.26, No.Suppl 1, pp.S205-S223, 2006.
    S. Pajevic and P.J. Basser, “Parametric and non-parametric statistical analysis of DT-MRI data”, Journal of Magnetic Resonance, Vol.163, No.1, pp.1-14, 2003.
    P.J. Basser, S. Pajevic, C. Pierpaoli, et al., “In vivo fiber tractography using DT-MRI data”, Magnetic Resonance in Medicine, Vol.44, No.4, pp.625-632, 2000.
    R. Brecheisen, A. Vilanova, B. Platel, et al., “Parameter sensitivity visualization for DTI fiber tracking”, IEEE Transactions on Visualization and Computer Graphics, Vol.15, No.6, pp.1441-1448, 2009.
    B. Whitcher, D.S. Tuch, J.J. Wisco, et al., “Using the wild bootstrap to quantify uncertainty in DTI”, Human Brain Mapping, Vol.29, No.3, pp.346-362, 2007.
    O. Friman and C.-F. Westin, “Uncertainty in white matter fiber tractography”, Medical Image Computing and ComputerAssisted Intervention-MICCAI 2005, Springer, pp.107-114, 2005.
    A.T. Pang, C.M. Wittenbrink and S.K. Lodha, “Approaches to uncertainty visualization”, The Visual Computer, Vol.13, No.8, pp.370-390, 1997.
    F. Jiao, J.M. Phillips, Y. Gur, et al., “Uncertainty visualization in HARDI based on ensembles of ODFS”, IEEE Pacific Visualization Symposium (PacificVis), IEEE, pp.193-200, 2012.
    S.M. Smith, M. Jenkinson, H. Johansen-Berg, et al., “Tractbased spatial statistics: Voxelwise analysis of multi-subject diffusion data”, Neuroimage, Vol.31, No.4, pp.1487-1505, 2006.
    M.J. DaSilva, S. Zhang, C. Demiralp, et al., “Visualizing the differences between diffusion tensor volume images”, Proceedings of the International Society for Magnetic Resonance in Medicine Diffusion MRI Workshop, pp.237-238, 2000.
    S. Correia, S.Y. Lee, T. Voorn, et al., “Quantitative tractography metrics of white matter integrity in diffusion-tensor MRI”, Neuroimage, Vol.42, No.2, pp.568-581, 2008.
    P. Joia, F.V. Paulovich, D. Coimbra, et al., “Local affine multidimensional projection”, IEEE Transactions on Visualization and Computer Graphics, Vol.17, No.12, pp.2563-2571, 2011.
    R. Jianu, C. Demiralp and D.H. Laidlaw, “Exploring 3D DTI fiber tracts with linked 2D representations”, IEEE Transactions on Visualization and Computer Graphics, Vol.15, No.6, pp.1449-1456, 2009.
    F. Paulovich, L. Nonato, R. Minghim, et al., “Least square projection: A fast high-precision multidimensional projection technique and its application to document mapping”, IEEE Transactions on Visualization and Computer Graphics, Vol.14, No.3, pp.564-575, 2008.
    W. Chen, Z. Huang, F. Wu, et al., “VAUD: A visual analysis approach for exploring spatio-temporal urban data”, IEEE Transactions on Visualization and Computer Graphics, doi:10.1109/TVCG.2017.2758362, 2017.
    X. Wang, J.-K. Chou, W. Chen, et al., “A utility-aware visual approach for anonymizing multi-attribute tabular data”, IEEE Transactions on Visualization and Computer Graphics, Vol.24, No.1, pp.351-360, 2018.
    J. Xia, F. Ye, W. Chen, et al., “LDSScanner: Exploratory analysis of low-dimensional structures in high-dimensional datasets”, IEEE Transactions on Visualization and Computer Graphics, Vol.24, No.1, pp.236-245, 2018.
    F.V. Paulovich, D.M. Eler, J. Poco, et al., “Piece wise laplacianbased projection for interactive data exploration and organization”, Computer Graphics Forum, Wiley Online Library, Vol.30, No.3, pp.1091-1100, 2011.
    A. Anand, L. Wilkinson and T.N. Dang, “Visual pattern discovery using random projections”, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), IEEE, pp.43-52, 2012.
    W. Chen, Z. Ding, S. Zhang, et al., “A novel interface for interactive exploration of DTI fibers”, IEEE Transactions on Visualization and Computer Graphics, Vol.15, No.6, pp.1433-1440, 2009.
    J. Poco, D.M. Eler, F.V. Paulovich, et al., “Employing 2d projections for fast visual exploration of large fiber tracking data”, Computer Graphics Forum, Wiley Online Library, Vol.31, No.3pt2, pp.1075-1084, 2012.
    J. Woodring and H.-W. Shen, “Multi-variate, time varying, and comparative visualization with contextual cues”, IEEE Transactions on Visualization and Computer Graphics, Vol.12, No.5, pp.909-916, 2006.
    M. Gleicher, D. Albers, R. Walker, et al., “Visual comparison for information visualization”, Information Visualization, Vol.10, No.4, pp.289-309, 2011.
    M.M. Malik, C. Heinzl and M.E. Groeller, “Comparative visualization for parameter studies of dataset series”, IEEE Transactions on Visualization and Computer Graphics, Vol.16, No.5, pp.829-840, 2010.
    J. Schmidt, M.E. Groller and S. Bruckner, “VAICo: Visual analysis for image comparison”, IEEE Transactions on Visualization and Computer Graphics, Vol.19, No.12, pp.2090-2099, 2013.
    R.P. Cabeen, M.E. Bastin and D.H. Laidlaw, “A comparative evaluation of voxel-based spatial mapping in diffusion tensor imaging”, NeuroImage, Vol.146, pp.100-112, 2017.
    C. Zhang, T. Schultz, K. Lawonn, et al., “Glyph-based comparative visualization for diffusion tensor fields”, IEEE Transactions on Visualization and Computer Graphics, Vol.22, No.1, pp.797-806, 2016.
    I. Corouge, P.T. Fletcher, S. Joshi, et al., “Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis”, Medical Image Analysis, Vol.10, No.5, pp.786-798, 2006.
    C.B. Goodlett, P.T. Fletcher, J.H. Gilmore, et al., “Group statistics of DTI fiber bundles using spatial functions of tensor measures”, Medical Image Computing and Computer-Assisted Intervention-MICCAI 2008, Springer, pp.1068-1075, 2008.
    T.T. Elvins and R. Jain, “Web-based volumetric data retrieval”, Proceedings of the First Symposium on Virtual Reality Modeling Language, ACM, pp.7-12, 1995.
    T. Funkhouser, P. Min, M. Kazhdan, et al., “A search engine for 3D models”, ACM Transactions on Graphics, Vol.22, No.1, pp.83-105, 2003.
    M. Hilaga, Y. Shinagawa, T. Kohmura, et al., “Topology matching for fully automatic similarity estimation of 3D shapes”, Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, pp.203-212, 2001.
    R. Osada, T. Funkhouser, Chazelle, et al., “Shape distributions”, ACM Transactions on Graphics, Vol.21, No.4, pp.93-101, 2002.
    G. Grigoryan and P. Rheingans, “Point-based probabilistic surfaces to show surface uncertainty”, IEEE Transactions on Visualization and Computer Graphics, Vol.10, No.5, pp.564-573, 2004.
    K. Pöthkow and H. Hege, “Positional uncertainty of isocontours: Condition analysis and probabilistic measures”, IEEE Transactions on Visualization and Computer Graphics, Vol.17, No.10, pp.1393-1406, 2011.
    F. Ferstl, K. Bürger and R. Westermann, “Streamline variability plots for characterizing the uncertainty in vector field ensembles”, IEEE Transactions on Visualization and Computer Graphics, Vol.22, No.1, pp.767-776, 2016.
    F. Wang, W. Chen, Y. Zhao, et al., “Adaptively exploring population mobility patterns in flow visualization”, IEEE Transactions on Intelligent Transportation Systems, Vol.18, No.8, pp.2250-2259, 2017.
    M. Hlawatsch, P. Leube, W. Nowak, et al., “Flow radar glyphsstatic visualization of unsteady flow with uncertainty”, IEEE Transactions on Visualization and Computer Graphics, Vol.17, No.12, pp.1949-1958, 2011.
    K. Potter, J. Kniss, R. Riesenfeld, et al., “Visualizing summary statistics and uncertainty”, Computer Graphics Forum, Vol.29, No.3, pp.823-832, 2010.
    H. Chen, S. Zhang, W. Chen, et al., “Uncertainty-aware multidimensional ensemble data visualization and exploration”, IEEE Transactions on Visualization and Computer Graphics, Vol.21, No.9, pp.1072-1086, 2015.
    C. Lundstrom, P. Ljung, A. Persson, et al., “Uncertainty visualization in medical volume rendering using probabilistic animation”, IEEE Transactions on Visualization and Computer Graphics, Vol.13, No.6, pp.1648-1655, 2007.
    R. Brecheisen, B. Platel, B.M. ter Haar Romeny, et al., “Illustrative uncertainty visualization of DTI fiber pathways”, The Visual Computer, Vol.29, No.4, pp.297-309, 2013.
    G. Kindlmann and C.-F. Westin, “Diffusion tensor visualization with glyph packing”, IEEE Transactions on Visualization and Computer Graphics, Vol.12, No.5, 2006.
    A. Abbasloo, V. Wiens, M. Hermann, et al., “Visualizing tensor normal distributions at multiple levels of detail”, IEEE Transactions on Visualization and Computer Graphics, Vol.22, No.1, pp.975-984, 2016.
    G. Kindlmann, D. Weinstein and D. Hart, “Strategies for direct volume rendering of diffusion tensor fields”, IEEE Transactions on Visualization and Computer Graphics, Vol.6, No.2, pp.124-138, 2000.
    W. Chen, Z. Yan, S. Zhang, et al., “Volume illustration of muscle from diffusion tensor images”, IEEE Transactions on Visualization and Computer Graphics, Vol.15, No.6, pp.1425-1432, 2009.
    T. Peeters, A. Vilanova, G. Strijkers, et al., “Visualization of the fibrous structure of the heart”, Vision, Modeling and Visualization, pp.309-316, 2006.
    W. Chen, S. Zhang, S. Correia, et al., “Abstractive representation and exploration of hierarchically clustered diffusion tensor fiber tracts”, Computer Graphics Forum, Wiley Online Library, Vol.27, No.3, pp.1071-1078, 2008.
    B. Preim, A. Baer, D. Cunningham, et al., “A survey of perceptually motivated 3D visualization of medical image data”, Computer Graphics Forum, Wiley Online Library, Vol.35, No.3, pp.501-525, 2016.
    C. Demiralp, R. Jianu and D.H. Laidlaw, “Exploring brain connectivity with two-dimensional maps”, New Developments in the Visualization and Processing of Tensor Fields, Springer, pp.187-207, 2012.
    M. Jenkinson, P. Bannister, M. Brady, et al., “Improved optimization for the robust and accurate linear registration and motion correction of brain images”, Neuroimage, Vol.17, No.2, pp.825-841, 2002.
    V. De Silva and J.B. Tenenbaum, “Sparse multidimensional scaling using landmark points”, Tech. Rep., Stanford University, 2004.
    S. Zhang, S. Correia and D.H. Laidlaw, “Identifying whitematter fiber bundles in DTI data using an automated proximitybased fiber-clustering method”, IEEE Transactions on Visualization and Computer Graphics, Vol.14, No.5, pp.1044-1053,2008.
    B. Silverman, Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, 1986.
    O. Mallo, R. Peikert, C. Sigg, et al., “Illuminated lines revisited”, Proceedings of IEEE Visualization, IEEE, pp.19-26, 2005.
    H. Chen, W. Chen, H. Mei, et al., “Visual abstraction and exploration of multi-class scatterplots”, IEEE Transactions on Visualization and Computer Graphics, Vol.20, No.12, pp.1683-1692, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (111) PDF downloads(241) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return