Citation: | WANG Shuliang, CHI Hehua, YUAN Ziqiang, et al., “Emotion Recognition Using Cloud Model,” Chinese Journal of Electronics, vol. 28, no. 3, pp. 470-474, 2019, doi: 10.1049/cje.2018.09.020 |
L.C. De Silva, T. Miyasato and R. Nakatsu, "Facial emotion recognition using multi-modal information", In Proceedings of IEEE International Conference on In Information, Communications and Signal Processing, ICICS, Beijing, China, Vol.1, pp.397-401, 1997.
|
K. Durand, M. Gallay, A. Seigneuric, et al., "The development of facial emotion recognition:The role of configural information", Journal of Experimental Child Psychology, Vol.97, No.1, pp.14-27, 2007.
|
C.D. Kashyap and P.R. Vishnu, "Facial emotion recognition", International Journal of Engineering and Future Technology, Vol.7, No.7, pp.18-29, 2016.
|
O. Russakovsky, J. Deng, H. Su, et al., "ImageNet large scale visual recognition challenge", International Journal of Computer Vision, Vol.115, No.3, pp.211-252, 2015.
|
Beymer DJ, "Face recognition under varying pose", In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Washington, USA, pp.756-761, 1994.
|
G. Ralph, B. Simon, M. Iain, et al., Face Recognition across Pose and Illumination, Springer-Verlag, Berlin, Germany, 2004.
|
R. Jenkins and A.M. Burton, "Stable face representations", Philosophical Transactions ofthe Royal Society B Biological Sciences, Vol.366, No.1571, pp.1671-1683, 2011.
|
W. Zhao, R. Chellappa, A. Rosenfeld, et al., "Face recognition:A literature survey", ACM Computing Surveys, Vol.35, No.4, pp.399-458, 2003.
|
Zhou Q, Shafiq U R, Zhou Y, et al., "Face recognition using dense sift feature alignment", Chinese Journal of Electronics, Vol.25, No.6, pp.1034-1039, 2016.
|
L. Wang, Y. Liang, W. Cai, et al., "Failure detection and correction for appearance based facial tracking", Chinese Journal of Electronics, Vol.24, No.1, pp.20-25, 2015.
|
Wang S, Yuan H, Cao B, et al., "Facial data field", Chinese Journal of Electronics, Vol.24, No.4, pp.667-673, 2015.
|
D. Li, C. Liu and W. Gan, "A new cognitive model:cloud model", International Journal of Intelligent Systems, Vol.24, No.3, pp.357-375, 2009
|
S L Wang and H N. Yuan, "View-angle of spatial data mining", Lecture Notes in Artificial Intelligence, Vol.4093, No.5, pp.1065-1076, 2006.
|
C. Szegedy, S. Ioffe, V. Vanhoucke, et al., "Inception-v4, Inception-ResNet and the impact of residual connections on learning", In Proceedings of AAAI, San Francisco, California, USA, pp.4278-4284, 2017.
|
D.R. Li, S.L. Wang and D.Y. Li, Spatial Data Mining:Theory and Application, Springer, Berlin, Germany, pp.187-201, 2015.
|
J.B. Wu, H.H. Chi and L.H. Chi, "A cloud modelbased approach for facial expression synthesis", Journal of Multimedia, Vol.6, No.2, pp.217-224, 2011
|
H.H. Chi, L.H. Chi, M. Fang, et al., "Facial expression recognition based on cloud model", The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol.38, Part Ⅱ, pp.124-128, 2010.
|
M JLyons, S Akamatsu, M Kamachi, et al., "The japanese female facial expression (JAFFE) database", In Proceedings of The Third International Conference on Automatic Face and Gesture Recognition, Nara, Japan, pp.14-16, 1998.
|
PLucey, J F Cohn, T Kanade, et al., "The extended cohnkanade dataset (CK+):A complete dataset for action unit and emotion-specified expression", In Proceedings of Computer Vision and Pattern Recognition Workshop on Human-Communicative Behavior, San Francisco, California, USA, pp.94-101, 2010.
|
K. He, X. Zhang, S. Ren, et al., "Deep residual learning for image recognition", In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp.770-778, 2016.
|
S. Srinivas, R.K. Sarvadevabhatla, K.R. Mopuri, et al., "A taxonomy of deep convolutional neural nets for computer vision. frontiers in robotics and AI, Vol.2, AritcleID 36, pp.1-13, 2016
|
S.L. Wang, H.H. Chi, H.N. Yuan, et al., "Extraction and representation of common feature from uncertain facial expressions with cloud model", Environmental Science and Pollution Research, Vol.24, No.36, pp.27778-27787, 2017.
|