PANG Shanqi, ZHANG Qingjuan, LIN Xiao, “Construction of Generalized Quantum Boolean Functions,” Chinese Journal of Electronics, vol. 28, no. 3, pp. 508-513, 2019, doi: 10.1049/cje.2019.03.001
Citation: PANG Shanqi, ZHANG Qingjuan, LIN Xiao, “Construction of Generalized Quantum Boolean Functions,” Chinese Journal of Electronics, vol. 28, no. 3, pp. 508-513, 2019, doi: 10.1049/cje.2019.03.001

Construction of Generalized Quantum Boolean Functions

doi: 10.1049/cje.2019.03.001
Funds:  This work is supported by the National Natural Science Foundation of China (No.11571094).
  • Received Date: 2017-12-25
  • Publish Date: 2019-05-10
  • The existing construction methods of Quantum Boolean functions (QBFs) are extended and simplified. All QBFs with one qubit and all local QBFs with any qubits are constructed. And we propose the concept of Generalized quantum Boolean functions (GQBFs). We find all GQBFs with one qutrit and all kinds of local GQBFs with any qutrits. The number of each of the four kinds of functions above is uncountably infinitely many. By using diagonal matrices, we obtain uncountably infinitely many non-local QBFs with any qubits and GQBFs with any qutrits. Infinitely many families of GQBFs with any qudits are obtained from the properties of projection matrices of known saturated orthogonal arrays.
  • loading
  • W. Liang, X. Zeng and X. Yunge, "The periods of a class of nonlinear feedback shift register sequences", Chinese Journal of Electronics, Vol.25, No.2, pp.296-303, 2016.
    A. Montanaro and T.J. Osborne, "Quantum Boolean functions", Chicago Journal of Theoretical Computer Science, Vol.2010, pp.1-45, 2010.
    A.N. Michael and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, pp.42-59, 2000.
    D. Goyeneche and K. Zyczkowski, "Genuinely multipartite entangled states and orthogonal arrays", Physical Review A, Vol.90, No.2, Article ID 022316, 18 pages, 2014.
    M. Rötteler and P. Wocjan, "Equivalence of decoupling schemes and orthogonal arrays", IEEE Transactions on Information Theory, Vol.52, No.9, pp.4171-4181, 2006.
    M. Shi, Y. Wang, L. Li, et al., "A restricted quantum deniable authentication protocol based on GHZ states", Chinese Journal of Electronics, Vol.27, No.2, pp.229-233, 2018.
    L. Arnaud and N.J. Cerf, "Exploring pure quantum states with maximally mixed reductions", Physical Review A, Vol.87, No.1, Article ID 012319, 9 pages, 2013.
    M.J. Bremner, D. Bacon and M.A. Nielsen, "Simulating Hamiltonian dynamics using many-qubit Hamiltonians and local unitary control", Physical Review A, Vol.71, No.5, pp.1-10, 2005.
    X. Zha, C. Yuan and Y. Zhang, "Generalized criterion for a maximally multi-qubit entangled state", Laser Physics Letters, Vol.10, No.4, pp.1-6, 2013.
    J. Du, S. Pang and Q. Wen, "Construction and count of 1-resilient rotation symmetric Boolean functions on pr variable", Chinese Journal of Electronics, Vol.23, No.4, pp.816-820, 2014.
    J. Du, S. Fu, L. Qu, et al., "New constructions of q-variable 1-resilient rotation symmetric functions over Fp", Science China Information Sciences, Vol.59, pp. 079102:1-079102:3, 2016.
    S. Pang, W. Xu, J. Du, et al., "Construction and count of 1-resilient rotation symmetric Boolean functions on 4p variables", Chinese Journal of Electronics, Vol.26, No.6, pp.1276-1283, 2017.
    S. Fu, C. Li and L. Qu, "On the number of rotation symmetric Boolean functions", Science China Information Sciences, Vol.53, No.3, pp.537-545, 2010.
    B.W. Reichardt, "Span programs and quantum query complexity:The general adversary bound is nearly tight for every Boolean function", Proceedings of 50th Annual IEEE Symposium on Foundations of Computer Science, pp.544-551, 2009.
    J. DU, S. Pang, Q. Wen, et al., "Construction of a class of quantum Boolean functions based on the Hadamard Matrix", Acta Mathematicae Applicatae Sinica, Vol.31, No.4, pp.1013-1020, 2015.
    J. Zhang and Q. Wen, "Construction of quantum Boolean functions", The 20106th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2010, Chengdu, China, pp.1-3, 2010.
    Y. Zhang, Y. Lu and S. Pang, "Orthogonal arrays obtained by orthogonal decomposition of projection matrices", Statistica Sinica, Vol.9, No.2, pp.595-604, 1999.
    R.F. Werner, "All teleportation and dense coding schemes", Journal of Physics A General Physics, Vol.34, No.35, pp.7081-7094, 2001.
    Y. Zhang, S. Pang and Y. Wang, "Orthogonal arrays obtained by the generalized Hadamard product", Discrete Math, Vol.238, pp.151-170, 2001.
    A.S. Hedayat, N.J.A. Sloane and J. Stufken, Orthogonal Arrays:Theory and Applications, Springer-Verlag, New York, USA, pp.49-51, 1999.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (390) PDF downloads(203) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint