ZHANG Xuejun, WANG Longqiang, DING Yuhan, HUANG Liya, CHENG Xiefeng. Brain Network Analysis of Schizophrenia Based on the Functional Connectivity[J]. Chinese Journal of Electronics, 2019, 28(3): 535-541. doi: 10.1049/cje.2019.03.017
Citation: ZHANG Xuejun, WANG Longqiang, DING Yuhan, HUANG Liya, CHENG Xiefeng. Brain Network Analysis of Schizophrenia Based on the Functional Connectivity[J]. Chinese Journal of Electronics, 2019, 28(3): 535-541. doi: 10.1049/cje.2019.03.017

Brain Network Analysis of Schizophrenia Based on the Functional Connectivity

doi: 10.1049/cje.2019.03.017
Funds:  This work is supported by the National Natural Science Foundation of China (No.61271334).
  • Received Date: 2017-04-26
  • Publish Date: 2019-05-10
  • Network analysis based on graph theory has greatly promoted the cognition of the human brain network. A detailed brain network function connection analysis was carried out for the brain of normal human brain and mental illness patients. We studied the Magnetoencephalography (MEG) of 9 normal subjects and 9 schizophrenics in left hemisphere temporal lobe and frontal lobe regions. And obtained the dynamic function connectivity matrix by calculating Pearson correlation coefficients that based on sliding time window and shorttime Fourier transform, and constructed weight and binary network by graph theory. Analyzed the small world properties of normal human brain networks, and compared the differences of network between normal subjects and patients with schizophrenia.
  • loading
  • S. Achard and E. Bullmore, "Efficiency and cost of economical brain functional networks", PLoS Comput Biol, Vol.3, No.2, pp.1403-1415, 2007.
    M. J. Brookes, P. K. Tewarie, Hunt B A E, et al., "A multi-layer network approach to MEG connectivity analysis",Neuroimage, Vol.132, pp.425-438,2016.
    H.F. Si, T. Xie, et al., "Research on brain functional network and lie detection based on phase lag index", Acta Electronica Sinica, Vol.46, No.7, pp.1742-1747, 2018.(in Chinese)
    W.W. Chang, H. Wang and C.C. Hua, "Study on lie detection method based on auditory ERP functional brain network characteristic and SVM", Acta Electronica Sinica, Vol. 44, No.7, pp.1757-1762, 2016.(in Chinese)
    M. Hassan, M. Shamas, M Khalil, et al., "EEGNET:An open source tool for analyzing and visualizing M/EEG connectome", PlosS One, Vol.10, No.9, pp. 138297, 2015.
    C. Y. Wee, S. Yang, P. T. Yap, et al., "Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification", Brain Imaging & Behavior, Vol.10, No.2, pp.342-356, 2016.
    R. L. Bluhm, J. Miller, R. A. Lanius, et al., "Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients:Anomalies in the default network", Schizophrenia Bulletin, Vol.33, No.4, pp.1004-1012, 2007.
    A. G. Garrity, G. D. Pearlson, K. McKiernan, et al., "Aberrant ‘default mode’ functional connectivity in schizophrenia", American Journal of Psychiatry, Vol.164, No.3, pp.450-457, 2007.
    Y. Liu, M. Liang, Y. Zhou, et al., "Disrupted small-world networks in schizophrenia", Brain, Vol.131, No.4, pp.945-961,2008.
    N. Tzourio-Mazoyer, B. Landeau, et al., "Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain", Neuroimage, Vol.15, No.1, pp.273-289, 2002.
    S. Micheloyannis, E. Pachou, C. J. Stam, et al., "Small-world networks and disturbed functional connectivity in schizophrenia", Schizophrenia Research, Vol.87, No.1, pp.60-66, 2006.
    M. T. Horstmann, S. Bialonski, N. Noennig, et al., "State dependent properties of epileptic brain networks:Comparative graph-theoretical analyses of simultaneously recorded EEG and MEG", Clinical Neurophysiology, Vol.121, No.2,pp.172-185, 2010.
    J. K. Roth, M. K. Johnson, F. Tokoglu, et al., "Modulating intrinsic connectivity:Adjacent subregions within supplementary motor cortex, dorsolateral prefrontal cortex, and parietal cortex connect to separate functional networks during task and also connect during rest", Plos One, Vol.9, No.3, pp.e90672:1-11, 2014.
    R. M. Hutchison, T. Womelsdorf, Allen E A, et al., "Dynamic functional connectivity:Promise, issues, and interpretations", Neuroimage, Vol.80, No.1, pp.360-378, 2013.
    Meszlényi, Regina, et al., "Resting state fMRI functional connectivity analysis using dynamic time warping", Frontiers in Neuroscience, Vol.11, No.2, Article ID 75,17 pages, 2017.
    X. Zhang, Y. T. Wang, Y. Wang, et al., "Ultra-slow frequency bands reflecting potential coherence between neocortical brain regions", Neuroscience, Vol.289, pp.71-84,2015.
    S. M. Smith, K. L. Miller, et al., "Network modelling methods for FMRI", Neuroimage, Vol.54, No.2, pp.875-891, 2011.
    G. Marrelec, A. Krainik, H. Duffau, et al., "Partial correlation for functional brain interactivity investigation in functional MRI", Neuroimage, Vol.32, No.1, pp. 228-237,2006.
    O. Banerjee, L. E. Ghaoui, A. D'Aspremont, et al., "Convex optimization techniques for fitting sparse Gaussian graphical models", International Conference on Machine Learning, Pittsburg, Pennsylvania, USA, pp.89-96, 2006.
    J.Friedman, T.Hastie and R.Tibshirani, "Sparse inverse covariance estimation with the graphical Lasso", Biostatitics, Vol.9, No.3, pp.432-441, 2008.
    Shannon C E, "A mathematical theory of communication", Bell System Technical Journal, Vol.9, No.3, pp.379-423,1948.
    Shimizu S, Hoyer P O and Kerminen A, "A linear non-Gaussian acyclic model for causal discovery", Journal of Machine Learning Research, Vol.9, No.3, pp.2003-2030,2006.
    Wang X, Cheng Y and Sun W, "Identification of overlapping protein complexes using structural and functional information of PPI network", Chinese Journal of Electronics, Vol.24, No.3, pp.564-568, 2015.
    D. W. Dahl, H. Honea and R. V. Manchanda, "Three Rs of interpersonal consumer guilt:Relationship, reciprocity, reparation", Journal of Consumer Psychology, Vol.15, No.4, pp.307-315, 2005.
    P. Tewarie, A. Hillebrand, M. M. Schoonheim, et al., "Functional brain network analysis using minimum spanning trees in multiple sclerosis:An MEG source-space study", Neuroimage, Vol.88, No.3, pp.308-318, 2014.
    M. J. Brookes, P. K. Tewarie, et al., "A multi-layer network approach to MEG connectivity analysis", Neuroimage, Vol.132, No.5, pp.425-438,2016.
    Y. Li and P. P. Wen, "Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface", Computer Methods and Programs in Biomedicine, Vol.113, No.3, pp.767-780, 2014.
    F. M. Atay and T. Bıyıkoğlu, "Graph operations and synchronization of complex networks", Physical Review E, Vol.72, No.1, Article ID 01621-7, 2005.
    A. Alhourani, S. K. Pathak and M. J. Randazzo, et al., "183 MEG identification of reduced functional connectivity following concussion", Neurosurgery, Vol.62, No.1, pp.227-227, 2015.
    S. Boccaletti, V. Latora and Y. Moreno, et al., "Complex networks:Structure and dynamics", Physics Reports, Vol.424, No.4, pp.175-308, 2006.
    R. Albert and A. L. Barabási, "Statistical mechanics of complex networks", Reviews of Modern Physics, Vol.74, No.1, pp.47-98, 2002.
    F. D. V. Fallani, A. Maglione, F. Babiloni, et al., "Cortical network analysis in patients affected by schizophrenia", Brain topography, Vol.23, No.2, pp.214-220, 2010.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (161) PDF downloads(163) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint