Citation: | WANG Feifan, ZHANG Baihai, CHAI Senchun, “Deep Auto-encoded Clustering Algorithm for Community Detection in Complex Networks,” Chinese Journal of Electronics, vol. 28, no. 3, pp. 489-496, 2019, doi: 10.1049/cje.2019.03.019 |
M.E.J. Newman, Networks:An Introduction, Oxford University Press, London, UK, pp.21-97, 2010.
|
Y. Zheng, D. Zhang and K. Xie, "A geography-intimacy-based algorithm for data forwarding in mobile social networks", Chinese Journal of Electronics, Vol.25, No.5, pp.936-942, 2016.
|
M.E.J. Newman, "Community detection in networks:Modularity optimization and maximum likelihood are equivalent", Physical Review E, Vol.94, p.052315, 2016.
|
H.C. Tao, Y.Q. Wang, Z.A. Wu, et al., "Discovering overlapping communities by clustering local link structures", Chinese Journal of Electronics, Vol.26, No.2, pp.430-434, 2017.
|
S. Fortunato and D. Hric, "Community detection in networks:A user guide", Physics Reports, Vol.659, pp.1-44, 2016.
|
M. Girvan and M.E.J. Newman, "Community structure in social and biological networks", Proc. Natl. Acad. Sci. U.S.A., Vol.99, No.12, pp.7821-7826, 2002.
|
M.E.J. Newman and M. Girvan, "Finding and evaluating community structure in networks", Physical Review E, Vol.69, p.026113, 2004.
|
M.E.J. Newman, "A measure of betweenness centrality based on random walks", Social Networks, Vol.27, No.1, pp.39-54, 2005.
|
U. Brandes, D. Delling, M. Gaertler, et al., "On finding graph clusterings with maximum modularity", International Workshop on Graph-Theoretic Concepts in Computer Science, Dornburg, Germany, pp.121-132, 2007.
|
S. Li, Y. Chen, H. Du, et al., "A genetic algorithm with local search strategy for improved detection of community structure", Complexity, Vol.15, No.4, pp.53-60, 2010.
|
X. Zhang and M.E.J. Newman, "Multiway spectral community detection in networks", Physical Review E, Vol.92, p.052808, 2015.
|
M.E.J. Newman, "Spectral methods for community detection and graph partitioning", Physical Review E, Vol.88, p.042822, 2013.
|
A.Y. Ng, M.I. Jordan and Y. Weiss, "On spectral clustering:analysis and an algorithm", International Conference on Neural Information Processing Systems:Natural and Synthetic, Vancouver, British Columbia, Canada, pp.849-856, 2001.
|
D. Silver, J. Schrittwieser, K. Simonyan, et al., "Mastering the game of go without human knowledge", Nature, Vol.550, No.7676, pp.354-371, 2017.
|
S.G. Zhu, J.P. Du and N. Ren, "A novel simple visual tracking algorithm based on hashing and deep learning", Chinese Journal of Electronics, Vol.26, No.5, pp.1073-1078, 2017.
|
L.C. Yuan, "A new word clustering algorithm based on word similarity", Chinese Journal of Electronics, Vol.26, No.6, pp.1221-1226, 2017.
|
P.S. Huang, M. Kim, M.H. Johnson, et al, "Deep learning for monaural speech separation", IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, pp.1562-1566, 2014.
|
G. Hinton and R. Satakhutdinov, "Reducing the dimensionality of data with neural networks", Science, Vol.313, No.5786, pp.504-7, 2006.
|
X.S. Wang, Y. Kong and Y.H. Cheng, "Dimensionality reduction for hyperspectral data based on sample-dependent repulsion graph regularized auto-encoder", Chinese Journal of Electronics, Vol.26, No.6, pp.1233-1238, 2017.
|
F. Tian, B. Gao, Q. Cui, et al., "Learning deep representations for graph clustering", Twenty-Eighth AAAI Conference on Artificial Intelligence, Quebéc City, Quebéc, Canada, pp.1293-1299, 2014.
|
J. Yang, D. Parikh and D. Batra, "Joint unsupervised learning of deep representations and image clusters", IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA, pp.5147-5156, 2016.
|
B. Yang, X. Fu, N.D. Sidiropoulos, et al., "Towards k-meansfriendly spaces:simultaneous deep learning and clustering", International Conference on Machine Learning, Sydney, Australia, pp.3861-3870, 2017.
|
T.V. Erven and P. Harremos, "Rényi divergence and Kullback-Leibler divergence", IEEE Transactions on Information Theory, Vol.60, No.7, pp.3797-3820, 2012.
|
P. Vincent, H. Larochelle, I. Lajoie, et al., "Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion", Journal of Machine Learning Research, Vol.11, No.12, pp.3371-3408, 2010.
|
L. Li, K. Fan, Z. Zhang, et al., "Community detection algorithm based on local expansion k-means", Neural Networks, Vol.26, No.6, pp.589-605, 2016.
|
L. Danon, A. Díazguilera, J. Duch, et al., "Comparing community structure identification", J. Stat. Mech., Vol.9, p.09008, 2005.
|
W.W. Zachary, "An information flow model for conflict and fission in small groups", Journal of Anthropological Research, Vol.33, No.4, pp.452-473, 1977.
|
M.E.J. Newman, "Modularity and community structure in networks", Proc. Natl. Acad. Sci. U.S.A., Vol.103, No.23, pp.8577-8582, 2006.
|