Citation: | WEI Xinlei, DU Junping, LIANG Meiyu, XUE Zhe. Crowd Density Field Estimation Based on Crowd Dynamics Theory and Social Force Model[J]. Chinese Journal of Electronics, 2019, 28(3): 521-528. doi: 10.1049/cje.2019.03.021 |
Guo J., Gong X., Liang J., et al., "An optimized hybrid unicast/multicast adaptive video streaming scheme over MBMS-enabled wireless networks", IEEE Transactions on Broadcasting, Vol.64, No4, pp.791-802,2018.
|
Xinlei Wei, Junping Du, Meiyu Liang, et al., "Boosting deep attribute learning via support vector regression for fast moving crowd counting", Pattern Recognition Letters, Vol.119,No.1, pp.12-23, 2019.
|
Li Yuhong, Xiaofan Zhang and Deming Chen, "CSRNet:Dilated convolutional neural networks for understanding the highly congested scenes", 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp.1091-1100, 2018.
|
Jiang Liu, Chenqiang Gao, Deyu Meng, et al., "DecideNet:Counting varying density crowds through attention guided detection and density estimation", 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, pp.5197-5206, 2018.
|
Zhu S., Du J. and Ren N., "A novel simple visual tracking algorithm based on hashing and deep learning", Chinese Journal of Electronics, Vol.26, No.5, pp.1073-1078, 2017.
|
Ji Qing-ge, He Hao and Wang Fu-chuan, "Social force model for crowd simulation using density field", Computer Science, Vol.42, No.6,pp.12-17,2015.
|
Lin Huang, Jianhua Gong, Wenhang Li, et al., "Social force model-based group behavior simulation in virtual geographic environments", International Journal of Geo-Information, Vol.7, No.3, pp.79, 2018.
|
Bellomo Nicola and DOGBé CHRISTIAN, "On the modelling crowd dynamics from scaling to hyperbolic macroscopic models", Math. Models Methods Appl. Sci., Vol.18, No.2008, pp.1317-1345, 2008.
|
N. Bellomo, S. Berrone, L. Gibelli, et al., "Macroscopic first order models of multicomponent human crowds with behavioral dynamics", Advances in Computational FluidStructure Interaction and Flow Simulation, Springer International Publishing Switzerland, pp.295-306, 2016.
|
A. S. Rao, J. Gubbi, S. Marusic, et al., "Estimation of crowd density by clustering motion cues", The Visual Computer, Vol.31, No.11, pp.1533-1552, 2015.
|
Baoxi Liu, Hong Liu, Hao Zhang, et al., "A social force evacuation model driven by video data", Simulation Modelling Practice and Theory, Vol.84, pp.190-203, 2018.
|
Zhe Xue, Guorong Li and Qingming Huang, "Joint multiview representation learning and image tagging", Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, USA, pp.1366-1372, 2016.
|
Liang Meiyu, Du Junping and Zhou Yipeng, "Cross-media hot topic auto-tracking model based on semantics and temporal context", Chinese Journal of Electronics, Vol.24, No.3, pp. 529-534, 2015.
|
Liang Meiyu, Du Junping and Li, Linghui, "Video superresolution reconstruction based on correlation learning and spatio-temporal nonlocal similarity", Multimedia Tools and Applications, Vol.75, No.17, pp.10241-10269, 2016.
|
Geng Yue, Du Junping and Liang Meiyu, "Abnormal event detection in tourism video based on salient spatio-temporal features and sparse combination learning", World Wide Web Journal, DOI: 10.1007/s11280-018-0603-0.
|
Sindagi, V. A. and V. M. Patel, "Generating high-quality crowd density maps using contextual pyramid CNNs", 2017 IEEE International Conference on Computer Vision, Venice, Italy, pp.1879-1888, 2017.
|
Muhammad Shahid Saleem, Muhammad Jaleed Khan, Khurram Khurshid, et al., "Crowd density estimation in still images using multiple local features and boosting regression ensemble", Neural Computing and Applications, DOI: 10.1007/s00521-019-04021-2.
|
Helbing, Dirk, Farkas, et al., "Simulating dynamical features of escape panic", Nature, Vol. 407, No.6803, pp.487-490, 2000.
|
Yanhao Zhang, Lei Qin, Rongrong Ji, et al., "Social attribute-aware force model:Exploiting richness of interaction for abnormal crowd detection", IEEE Transactions on Circuits and Systems for Video Technology, Vol.25,No.7 pp.1231-1245, 2015.
|
Brox, Thomas and Jitendra Malik, "Large displacement optical flow:Descriptor matching in variational motion estimation", IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.33, No.3, pp.500-513, 2011.
|
Xia Wei, Zhang Junping and Kruger Uwe, "Semi-supervised pedestrian counting with temporal and spatial consistencies", IEEE Transactions on Intelligent Transportation Systems, Vol.16, No.4, pp.1705-1714, 2015.
|
A. B. Chan, Z. S. J. Liang and N. Vasconcelos, "Privacy preserving crowd monitoring:Counting people without people models or tracking", 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, pp.1-7, 2008.
|
Chan A. B. and N. Vasconcelos, "Counting People with LowLevel Features and Bayesian regression", IEEE Transactions on Image Processing, Vol.21, No.4, pp.20160-2177, 2012.
|
Venkatesh Bala Subburaman, Adrien Descamps, Cyril Carincotte, et al., "Counting people in the crowd using a generic head detector", IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, Beijing, China, pp.470-475, 2012.
|
Jian Yao and Jean-Marc Odobez, "Multi-layer background subtraction based on color and texture", IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, pp.1-8, 2007.
|
Olivier Barnich and Marc Van Droogenbroeck, "ViBe:A universal background subtraction algorithm for video sequences", IEEE Transactions on Image Processing, Vol.20, No.6, pp.1709-1724, 2011.
|
Chen Change Loy, Shaogang Gong and Tao Xiang, "From semi-supervised to transfer counting of crowds", International Conference on Computer Vision,Sydney, NSW, Australia, pp.2256-2263, 2013.
|
Almer A., Perko R., Schrom-Feiertag H., et al., "Critical situation monitoring at large scale events from airborne video based crowd dynamics analysis", Geospatial Data in a Changing World, Springer International Publishing, Switzerland, pp.351-368, 2016.
|