WANG Zhifang, ZHEN Jiaqi, LI Yanchao, LI Guoqiang, HAN Qi. Multi-feature Multimodal Biometric Recognition Based on Quaternion Locality Preserving Projection[J]. Chinese Journal of Electronics, 2019, 28(4): 789-796. doi: 10.1049/cje.2019.05.006
Citation: WANG Zhifang, ZHEN Jiaqi, LI Yanchao, LI Guoqiang, HAN Qi. Multi-feature Multimodal Biometric Recognition Based on Quaternion Locality Preserving Projection[J]. Chinese Journal of Electronics, 2019, 28(4): 789-796. doi: 10.1049/cje.2019.05.006

Multi-feature Multimodal Biometric Recognition Based on Quaternion Locality Preserving Projection

doi: 10.1049/cje.2019.05.006
Funds:  This work is supported by the National Natural Science Foundation of China (No.61501176, No.61505050, No.61601174).
  • Received Date: 2018-07-02
  • Rev Recd Date: 2018-10-30
  • Publish Date: 2019-07-10
  • This paper proposed Quaternion locality preserving projection (QLPP) for multi-feature multimodal biometric recognition. Multi-features fill the real part or the three imaginary parts of quaternion to constitute the quaternion fusion features. In quaternion division ring, QLPP extracts the local information and finds essential manifold structure of the quaternion fusion features. Deferent from Quaternion principal component analysis (QPCA) and Quaternion fisher discriminant analysis (QFDA), QLPP takes advantage of the optimal linear approximations to find the nonlinear manifold structures. Two experiments are designed:one fuses four features from two biometric modalities, and the other fuses three features from three biometric modalities. The experimental results show the proposed algorithm achieves much better performance than the unimodal biometric algorithms, the traditional feature level fusion methods(weighted sum rule and series rule) and two quaternion representation methods(QPCA and QFDA).
  • loading
  • I. Koichi and A. Takafumi, “Recent advances in biometric recognition”,Recent Advances in Biometric Recognition, Vol.6, No.1, pp.64–80, 2018.
    L. You, L. Yang, W. Yu, et al., “A cancelable fuzzy vault algorithm based on transformed fingerprint features”, Chinese Journal of Electronics, Vol.26, No.2, pp.236–243, 2017.
    S. Zhang, R. He, Z. Sun, et al., “DeMeshNet: Blind face inpainting for deep meshFace verification”, IEEE Transactions on Information Forensics and Security, Vol.13, No.3, pp.637–647, 2017.
    M.B. Yilmaz and B. Yanikoglu, “Score level fusion of classifiers in off-line signature verification”, Information Fusion, Vol.32, pp.109–119, 2016.
    Y. Li, F. Ren and M. Hu, “Dynamic fuzzy density for multiclassifier fusion algorithm”, Acta Electronica Sinica, Vol.46, No.5, pp.1246–1252, 2018. (in Chinese)
    Z. Hu and J. Chen, “Feature extraction model based on multi-layered deep local subspace sparse optimization”, Acta Electronica Sinica, Vol.45, No.10, pp.2383–2389, 2017. (in Chinese)
    S. Yang, C. Zhao and F. Liu, “Fusion of local and global features using multiple kernel learning for face recognition”, Acta Electronica Sinica, Vol.44, No.10 pp.2344–2350, 2016. (in Chinese)
    J. Yang, J.Y. Yang and A.Frangi, “Combined fisherfaces framework”, Image and Vision Computing, Vol.21, No.12, pp.1037–1044, 2003.
    B. Chen, J. Yang, B. Jeon, et al., “Kernel quaternion principal component analysis and its application in RGB-D object recognition”, Neurocomputing, Vol.266, pp.293–303, 2017.
    C. Zou, K. Kou and Y. Wang, “Quaternion collaborative and sparse representation with application to color face image”, IEEE Transaction on Image Processing, Vol.25, No.7, pp.3287–3302, 2016.
    L. Jin, H. Liu, X. Xu, et al., “Quaternion-based impulse noise removal from color video sequences”, IEEE Transactions on Circuits and Systems for Video Technology, Vol.23, No.5, pp.741–-755, 2013.
    A. Kolaman and O. Yadid-Pecht, “Quaternion structural similarity: A new quality index for color images”, IEEE Transactions on Image Processing, Vol.21, No.4, pp.1526-1536, 2012.
    X. Xu, Z. Guo, C. Song, et al., “Multispectral palmprint recognition using a quaternion matrix”, Sensors, Vol.12, No.4, pp.4633–4647, 2012.
    F. Lang, J. Zhou, B. Yan, et al., “Quaternion based image information parallel fusion”, Acta Automatica Sinica, Vol.33, No.11, pp.1136–1143, 2007.
    X. He, S. Yan, Y. Hu, et al., “Face recognition using laplacianfaces”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.27, No.3, pp.328–340, 2005.
    W. Li, Quaternion Matrix, National University of Defense Technology Press, Changsha, China, pp.20–21, 2002. (in Chinese)
    F. Lang, J.L. Zhou, B. Yan, et al., “Obtain method o quaternion matrix orthogonal eigenvector set and its application in color face recognition”, Acta Automatica Sinica, Vol.34, No.2, pp.121–129, 2008. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (158) PDF downloads(196) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return