Citation: | GAO Chenqiang, LI Xindou, ZHOU Fengshun, et al. “Face Liveness Detection Based on the Improved CNN with Context and Texture Information”. Chinese Journal of Electronics, vol. 28 no. 6. doi: 10.1049/cje.2019.07.012 |
J. Liu, X. Jing, S. Sun, et al., "Local gabor dominant direction pattern for face recognition", Chinese Journal of Electronics, Vol.24, No.2, pp.245-250, 2015.
|
J. Yang, Z. Lei and S. Z. Li, "Learn convolutional neural network for face anti-spoofing", arXiv preprint arXiv:1408.5601, 2014.
|
D. Wen, H. Han and A. k. Jain, "Face spoof detection with image distortion analysis", IEEE Transactions on Information Forensics & Security, Vol.10, No.4, pp.746-761, 2015.
|
T. Ojala, M. pietikainen and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns", IEEE Transactions on Pattern Analysis & Machine Intelligence, Vol.24, No.7, pp.971-987, 2002.
|
D. Dalal and B. Triggs, "Histograms of oriented gradients for human detection", IEEE Computer Society Conference on Computer Vision & Pattern Recognition, San Diego, CA, USA, pp.886-893, 2005.
|
Z. Boulkenafet, J. Komulainen and A. Hadid, "Histograms of oriented gradients for human detection", Face Spoofing Detection Using Colour Texture Analysis, Vol.11, No.8, pp.1818-1830, 2017.
|
H. Fan, Z. Liang, Y. Yi, et al., "Unsupervised person re-identification:Clustering and fine-tuning", ACM Transactions on Multimedia Computing, Communications, and Applications, Vol.14, No.4, Article No.83, 18 pages, 2018.
|
W. Jun, L. Jing, C. Jun, et al., "Face alignment by coarsetofine shape estimation", Chinese Journal of Electronics, Vol.27, No.6, pp.1183-1191, 2018.
|
Y. Liu, A. Jourabloo and X. Liu, "Learning deep models for face anti-spoofing:Binary or auxiliary supervision", Proc. of the IEEE Computer Vision and Pattern Recognition, Salt Lake, Utah, USA, pp.389-398, 2018.
|
A. Pinto, H. Pedrini, W. R. Schwartz, et al., "Face spoofing detection through visual codebooks of spectral temporal cubes", IEEE Transactions on Image Processing, Vol.24, No.12, pp.4726-4740, 2015.
|
V. Ojansivu and J. Heikkila, "Blur insensitive texture classification using local phase quantization", International Conference on Image & Signal Processing, Berlin, Heidelberg, pp.236-243, 2008.
|
R. Nosaka, Y. Ohkawa and k. Fukui, "Feature extraction based on co-occurrence of adjacent local binary patterns", Pacific Rim Conference on Advances in Image & Video Technology, Berlin, Heidelberg, pp.82-91, 2011.
|
B. Peixoto, C. Michilassi and A. Rocha, "Face liveness detection under bad illumination conditions", Pacific Rim Conference on Advances in Image & Video Technology, Brussels, Belgium, pp.82-91, 2011.
|
J. Maata, A. Hadid and M. Pietikainen, "Face spoofing detection from single images using texture and local shape analysis", IET Biometrics, Vol.1, No.1, pp.3-10, 2012.
|
T. Pereira, A. Anjos, J. Martino, et al., "LBP-TOP based countermeasure against face spoofing attacks", International Conference on Computer Vision, Berlin, Heidelberg, pp.121-132, 2012.
|
S. Bharadwaj, T. Dhamaecha, M. Vatsa, et al., "Computationally efficient face spoofing detection with motion magnification", Computer Vision and Pattern Recognition Workshops, Portland, Oregon, USA, pp.105-1110, 2013.
|
Z. Zhang, J. Yan, S. Liu, et al., "A face antispoofing database with diverse attacks", International Conference on Biometrics, New Delhi, India, pp.26-31, 2012.
|
L. Li, Z. Xia, L. Li, et al., "Face antispoofing via hybrid convolutional neural network", International Conference on the Frontiers and Advances in Data Science, pp.120-124, 2017.
|
Y. Atoum, Y. Liu, A. Jourabloo, et al., "Face anti-spoofing using patch and depth-based cnns", IEEE International Joint Conference on Biometrics, Xi'an, China, pp.319-328, 2018.
|
Z. Xu, S. Li and W. Deng, "Learning temporal features using lstm-cnn architecture for face antispoofing", Asian Conference on Pattern Recognition, Kuala Lumpur, Malaysia, pp.141-145, 2016.
|
G. Huang, Z. Liu, L. Maaten, et al., "Densely connected convolutional networks", IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, pp.2261-2269, 2017.
|
L. Jian, W. Zheng, W. Tao, et al., "An android malware detection system based on feature fusion", Chinese Journal of Electronics, Vol.27, No.6, pp.1206-2213, 2018.
|
X. Liu, M. Kan, W. Wu, et al., "VipLFaceNet:An open source deep face recognition SDK", Frontiers of Computer Science, Vol.11, No.2, pp.208-218, 2016.
|
I. Chingovska, A. Ajos, S. Marchel, et al., "On the effectiveness of local binary patterns in face antispoofing", Biometrics Special Interest Group, Darmstadt, Germany, pp.1-7, 2012.
|
S. Bengio and J. Mariethoz, "A statistical significance test for person authentication", The Speaker and Language Recognition Workshop, pp.237-244, Toledo, USA, 2004.
|
L. Li, X. Feng, Z. Boulkenafet, et al., "An original face anti-spoofing approach using partial convolutional neural network", International Conference on Image Processing Theory, Tools and Applications, Oulu, Finland, pp.1-6, 2017.
|