Citation: | LUO Dingsheng, NIE Mengxi, WU Xihong, “Generating Basic Unit Movements with Conditional Generative Adversarial Networks,” Chinese Journal of Electronics, vol. 28, no. 6, pp. 1099-1107, 2019, doi: 10.1049/cje.2019.07.013 |
C.C. Kemp, A. Edsinger and E. Torres-Jara, "Challenges for robot manipulation in human environments", IEEE Robotics & Automation Magazine, Vol.14, No.1, pp.20-29, 2007.
|
Z. Li, J. Mei, S. Cao, et al., "Modeling and control of automatic precision assembly robot with multi-information fusion measuring system and control algorithm", ACTA ELECTRONICA SINICA, Vol.43, No.3, pp.636-640, 2018.
|
S.Y. Shin and C. Kim, "Human-like motion generation and control for humanoid's dual arm object manipulation", IEEE Transactions on Industrial Electronics, Vol.62, No.4, pp.2265-2276, 2015.
|
L. Jamone, L. Natale and F. Nori, "Autonomous online learning of reaching behavior in a humanoid robot", International Journal of Humanoid Robotics, Vol.9, No.03, p.1250017, 2012.
|
D. Bertram, J. Kuffner, R. Dillmann, et al., "An integrated approach to inverse kinematics and path planning for redundant manipulators", Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, Orlando, Florida, USA. pp.1874-1879, 2006.
|
D. Gong, R. He and J. Yu, "Motion mapping in the joint space for the control of the heterogeneous wheelchair-mounted robotic arm", ACTA ELECTRONICA SINICA, Vol.46, No.2, pp.665-672, 2018.
|
S. Xu, S. Song and G. She, "An improved algorithm of path planning for sweeping robot", Measurement & Control Technology, Vol.36, No.2, pp.120-127, 2017.
|
W. Burger, E. Wieser, E. Dean-Leon, et al., "A scalable method for multi-stage developmental learning for reaching", Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (ICDL-EpiRob 2017), Instituto Superior Tecnico, Lisbon, Portugal, 2017.
|
D. Luo, F. Hu, Y. Deng, et al., "An infant-inspired model for robot developing its reaching ability", Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics (ICDL-EpiRob 2016), Cergy-Pontoise, France, pp.310-317, 2016.
|
Z. Mahoor, B. MacLennan and A. McBride, "Neurally plausible model of robot reaching inspired by infant motor babbling", arXiv preprint, Vol.1801, No.00293, p.arXiv, 2017.
|
H.N. Kadmon, U. David, H.N. G, et al., "Movement decomposition in the primary motor cortex", Cerebral Cortex, 2018.
|
T.K. A and S. Reza, "Learning of action through adaptive combination of motor primitives", Nature, Vol.407, No.6805, p.742, 2000.
|
G.S. F, "Motor primitives new data and future questions", Current Opinion in Neurobiology, Vol.33, pp.156-165, 2015.
|
F. Tamar and H. Binyamin, "Motor primitives in vertebrates and invertebrates", Current opinion in neurobiology, Vol.15, No.6, pp.660-666, 2005.
|
S. Matteo, A. Sangik and L. Dongheui, "Incremental kinesthetic teaching of end-effector and null-space motion primitives", Proceedings of the 2015 IEEE International Conference on Robotics and Automation, ICRA 2015, Seattle, USA, pp.3570-3575, 2015.
|
P. Affan, M. Yuecheng and L. Dongheui, "Learning deep movement primitives using convolutional neural networks", IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS 2017), Birmingham, UK, 2017.
|
B. Aleksandar, N. Bojan, U. Ale, et al., "Compliant movement primitives in a bimanual setting", IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS 2017), Birmingham, UK, pp.365-371, 2017.
|
K. Li, Y. Li, X. Hu, et al., "A robust and accurate object tracking algorithm based on convolutional neural network", ACTA ELECTRONICA SINICA, Vol.46, No.9, pp.2087-2093, 2018.
|
S. Piao, Q. Zhong and Y. Liu, "The research of optimal motion planning for robot in complex environment", Chinese Journal of Electronics, Vol.20, No.4, pp.637-640, 2011.
|
H. Fan, W. Xihong and L. Dingsheng, "Learning basic unit movements for humanoid arm motion control", 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC 2016), pp.327-333, 2016.
|
H. Fan, L. Wentao, W. Xihong, et al., "Learning basic unit movements with gate-model auto-encoder for humanoid arm motion control", IEEE International Conference on Information and Automation (ICIA 2016), pp.246-251, 2016.
|
M. Mirza and S. Osindero, "Conditional generative adversarial nets", arXiv preprint, Vol.1411, No.1784, pp.1-7, 2014.
|
D. Nguyen-Tuong and J. Peters, "Model learning for robot control:a survey", Cognitive Processing, Vol.12, No.4, pp.319-340, 2011.
|
K. Mitsuo, "Internal models for motor control and trajectory planning", Current Opinion in Neurobiology, Vol.9, No.6, pp.718-727, 1999.
|
I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., "Generative adversarial nets", Advances in Neural Information Processing Systems. NIPS, 2014, Montreal, Canada, pp.2672-2680, 2014.
|
G. Ishaan, A. Faruk, A. Martin, et al., "Improved training of wasserstein gans", Advances in Neural Information Processing Systems, Long Beach, USA, pp.5767-5777, 2017.
|
T. Zhang, F. Hu, Y. Deng, et al., "A hierarchical inverse model based on proprioception and dnn for robot reaching", Conference of the IEEE Industrial Electronics Society. IECON 2017, Beijing, China, pp.6697-6702, 2017.
|