Citation: | ZHU Chuangying, DU Junping, ZHANG Qiang, et al., “FDBST: Fast Discovery of Bursty Spatial-Temporal Topic,” Chinese Journal of Electronics, vol. 29, no. 1, pp. 168-176, 2020, doi: 10.1049/cje.2019.12.002 |
F. Kou, J. Du, Z. Lin, et al., "A semantic modeling method for social network short text based on spatial and temporal characteristics", Journal of Computational Science, Vol.28, pp.281-293, 2018.
|
X. Cheng, X. Yan, Y. Lan, et al., "BTM:Topic modeling over short texts".IEEE Transactions on Knowledge and Data Engineering, Vol.26, No.12, pp.2928-2941, 2014.
|
L. Shi, J. Du, M. Liang, "Social network bursty topic discovery based on RNN and topic model", Journal of Communications, Vol.39, No.04, pp.189-198, 2018. (in Chinese)
|
G. Stilo and P. Velardi, "Time makes sense:Event discovery in twitter using temporal similarity", Proceedings of the 2014 Ieee/wic/acm International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Warsaw, Poland, pp.186-193, 2014.
|
F. Kou, J. Du, Y. He, et al., "Social network search based on semantic analysis and learning", Caai Transactions on Intelligence Technology, Vol.1, No.4, pp.293-302, 2016.
|
C. Zhu and J. Du, "Background feature clustering and its application to social text", Information Processing Letters, Vol.136, pp.44-48, 2018.
|
W. Xie, F. Zhu, J. Jiang, et al., "Topicsketch:Realtime bursty topic detection from twitter", IEEE Transactions on Knowledge and Data Engineering, Vol.28, No.8, pp.2216-2229, 2016.
|
D. He and D.S. Parker, "Topic dynamics:an alternative model of bursts in streams of topics", Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, Washington, DC, USA, pp.443-452, 2010.
|
P. Lv, C. Ji, X. Wang, et al., "Mass of short texts topical Hierarchy mining integrated anchor extraction", Chinese Journal of Electronics, Vol.46, No.5, pp.1084-1088, 2018. (in Chinese)
|
W. Cui, J. Du, D. Wang, et al., "Extended search method based on a semantic hashtag graph combining social and conceptual information", World Wide Web, Vol.22, No.6, pp.2589-2610, 2019.
|
X. Li, C. Li, J. Chi, et al., "Short text topic modeling by exploring original documents", Knowledge and Information Systems, Vol.56, No.2, pp.443-462, 2018.
|
W. Liang, R. Feng, X. Liu, et al., "GLTM:A global and local word embedding-based topic model for short texts", IEEE Access, Vol.6, pp.43612-43621, 2018.
|
J. Chen, X. Liu, B. Li, et al., "Personalized microblogging recommendation based on dynamic interests and social networking of users", Chinese Journal of Electronics, Vol.45, No.4, pp.898-905, 2017. (in Chinese)
|
P. Lv, X. Meng, Y. Zhang, "FeRe:Exploiting influence of multi-dimensional features resided in news domain for recommendation", Information Processing and Management, Vol.53, No.5, pp.1215-1241, 2017.
|
F. Kou, J. Du, C. Yang, et al., "Hashtag recommendation based on multi-features of microblogs". Journal of Computer Science and Technology, Vol.33, No.4, pp.711-726, 2018.
|
W. Wang, X. Zhang, G. Ren, et al., "Predicting microblog user retweet behaviors based on energy optimization", Chinese Journal of Electronics, Vol.45, No.12, pp.2987-2996, 2017. (in Chinese)
|
Q. Li, L. Liu, M. Xu, et al., "GDTM:A Gaussian dynamic topic model for forwarding prediction under complex mechanisms". IEEE Transactions on Computational Social Systems, Vol.6, No.2, pp.338-349, 2019.
|
D.M. Blei and J.D. Lafferty, "Dynamic topic models", Proc of the 23rd International Conference on Machine Learning, Pittsburgh, Pennsylvania, USA, 2006.
|
D.M. Blei, "Probabilistic topic models", Communications of the ACM, Vol.55, No.4, pp.77-84, 2012.
|
P. Jähnichen, F. Wenzel, M. Kloft, et al., "Scalable generalized dynamic topic models", Proceedings of the 21st International Conference on Artificial Intelligence and Statistics, Lanzarote, Spain, pp.1427-1435, 2018.
|
Z. Gou, L. Han, L. Sun, et al., "Constructing dynamic topic models based on variational antoencoder and factor graph", IEEE Access, Vol.6, pp.53012-53111, 2018.
|
X. Yan, J. Guo, Y. Lan, et al., "A probabilistic model for bursty topic discovery in microblogs", Proc of the 29th AAAI Conference on Artificial Intelligence, Austin, Texas, USA, pp.353-359, 2015.
|
M. Cataldi, L.D. Caro, C. Schifanella, "Twitter as a personalizable information service", Multimedia Data Mining and Analytics, Springer, Cham, pp.61-91, 2015.
|
J. Huang, M. Peng, H. Wang, et al., "A probabilistic method for emerging topic tracking in Microblog stream", World Wide Web-internet and Web Information Systems, Vol.20, No.2, pp.325-350, 2017.
|
Y. Qin, D. Wurzer and C. Tang. "Predicting future rumours", Chinese Journal of Electronics, Vol.27, No.3, pp.514-520, 2018.
|
T. Zhang, B. Zhou, J. Huang, et al., "A refined method for detecting interpretable and real-time bursty topic in microblog stream", International Conference on Web Information Systems Engineering, Puschino, Russia, pp.3-17, 2017.
|
Y. Wan and J. Sui. "Bursty topic detection method for microblog based on influence from user behaviors", Journal of university of science and technology of China, Vol.47, No.4, pp.328-335, 2017. (in Chinese)
|
K.C. Lee, C.H. Hsieh, L.J. Wei, et al., "Sec-Buzzer:Cyber security emerging topic mining with open threat intelligence retrieval and timeline event annotation", Soft Computing, Vol.21, No.11, pp.2883-2896, 2017.
|