HUANG Yang, YANG Wei. Quantum Teleportation via Qutrit Entangled State[J]. Chinese Journal of Electronics, 2020, 29(2): 228-232. doi: 10.1049/cje.2019.12.009
Citation: HUANG Yang, YANG Wei. Quantum Teleportation via Qutrit Entangled State[J]. Chinese Journal of Electronics, 2020, 29(2): 228-232. doi: 10.1049/cje.2019.12.009

Quantum Teleportation via Qutrit Entangled State

doi: 10.1049/cje.2019.12.009
Funds:  This work is supported by the National Natural Science Foundation of China (No.61572456) and the Anhui Initiative in Quantum Information Technologies (No.AHY150300).
More Information
  • Corresponding author: YANG Wei (corresponding author) is an associate professor in School of Computer Science and Technology at the University of Science and Technology of China. In 2007, he received the Ph.D. degree in computer science from University of Science and Technology of China and was awarded the Dean' s Prize of Chinese Academy of Sciences. His research interests include information security, quantum information and wireless networks. He has authored or co-authored over 120 technical papers in major international journals and conferences. In 2014, he got the Natural Science Award of Ministry of Education of People's Republic of China. In 2016, he won the Best Paper Award at ACM UbiComp. (
  • Received Date: 2019-05-06
  • Rev Recd Date: 2019-05-31
  • Publish Date: 2020-03-10
  • Qutrit is the natural extension of qubit in quantum information processing and has quite a few advantages that outperform qubit. In this paper, we investigate the feasibility of teleportation of an unknown qubit state, as well as an unknown qutrit state using a two-qutrit entangled pair. We show that by carefully constructing the measurement bases, both the qubit and the qutrit can be faithfully teleported from Alice to Bob with a two-qutrit maximally entangled state.
  • loading
  • Wei Yang, Liusheng Huang and Fang Song, “Privacy preserving quantum anonymous transmission via entanglement relay”, Scientific Reports, Vol.6, No.1, DOI:10.1038/srep26762, 2016.
    He Wang, Yuqing Zhang, Gaofei Wu, et al., “Authenticated quantum dialogue without information leakage”, Chinese Journal of Electronics, Vol.27, No.2, pp.270-275, 2018.
    Bingren Chen, Wei Yang and Liusheng Huang, “Cryptanalysis and improvement of the novel quantum scheme for secure two-party distance computation”, Quantum Information Processing, Vol.18, No.1, Article No.35, 2019.
    Qijian He, Wei Yang, Bingren Chen, et al., “Cryptanalysis and improvement of the novel semi-quantum secret sharing scheme using entangled states”, Modern Physics Letters B, Vol.33, No.4, Article ID.1950045, 2019.
    Shibin Zhang, Zhihai Xie, Yifen Yin, et al., “Study on quantum trust model based on node trust evaluation”, Chinese Journal of Electronics, Vol.26, No.3, pp.608-613, 2017.
    C.H. Bennett, G. Brassard, C. Crépeau, et al., “Teleporting an unknown quantum state via dual classical and EinsteinPodolsky-Rosen channels”, Phys. Rev. Lett., Vol.70, No.13, pp.1895-1899, 1993.
    A. Zeilinger, “Quantum teleportation, onwards and upwardst”, Nature Physics, Vol.14, No.1, pp.3-4, 2018.
    R. van Breukelen and K. Papadodimas, “Quantum teleportation through time-shifted AdS wormholes”, J. High Energ. Phys., Vol.2018, No.8, Article ID.142, 15 pages, 2018.
    M. Ikram, S. Zhu and M. Zubairy, “Quantum teleportation of an entangled state”, Phys. Rev. A, Vol.62, No.2, Article ID.022307, 2000.
    H. Lu and G.C. Guo, “Teleportation of a two-particle entangled state via entanglement swapping”, Phys. Lett. A, Vol.276, No.5-6, pp.209-212, 2000.
    B.S. Shi and A. Tomita, “Teleportation of an unknown state by W state”, Phys. Lett. A, Vol.296, No.4-5, pp.161-164, 2002.
    J. Fang, Y. Lin and S. Zhu, et al., “Probabilistic teleportation of a three-particle state via three pairs of entangled particles”, Phys. Rev. A, Vol.67, No.1, Article ID.014305, 2003.
    J. Joo, Y. Park and S. Oh, “Quantum teleportation via a W state”, New Journal of Physics, Vol.5, No.1, Article ID.136, 2003.
    G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement”, Phys. Rev. A, Vol.71, No.3, Article ID.032303, 2005.
    Y. Yeo and W.K. Chua, “Teleportation and dense coding with genuine multipartite entanglement”, Phys. Rev. Lett., Vol.96, No.6, Article ID.060502, 2006.
    P.X. Chen, S.Y. Zhu and G.C. Guo, “General form of genuine multipartite entanglement quantum channels for teleportation”, Phys. Rev. A, Vol.74, No.3, Article ID.032324, 2006.
    S. Muralidharan and P. K. Panigrahi, “Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state”, Phys. Rev. A, Vol.77, No.3, Article ID.032321, 2008.
    C.Y. Chen, C.C. Hsueh and C.C. Hsu, “Two-to-one quantum teleportation protocol and its application”, Chaos, Solitons and Fractals, Vol.36, No.5, pp.1399-1404, 2008.
    D.Bouwmester, J.W. Pan, K. Mattle, et al., “Experimental quantum teleportation”, Nature, Vol.390, No.6660, Article ID.575, 1997.
    A. Furusawa, J.L. Sorensen, S.L. Braunstein, et al., “Unconditional quantum teleportation”, Science, Vol.282, No.5389, pp.706-709, 1998.
    M. Riebe, H. Häffner, CF. Roos, et al., “Deterministic quantum teleportation with atoms”, Nature, Vol.429, No.6993, Article ID.734, 2004.
    M.D. Barret, J. Chiaverini, T. Schaetz, et al., “Deterministic quantum teleportation of atomic qubits”, Nature, Vol.429, No.6993, Article ID.737, 2004.
    S. Stenholm and P.J. Bardroff, “Teleportation of Ndimensional states”, Phys. Rev. A, Vol.58, No.6, Article ID.4773, 1998.
    M.S. Zubairy, “Quantum teleportation of a field state”, Phys. Rev. A, Vol.58, No.6, Article ID.4368, 1998.
    N.B. An, “Teleportation of two-quNit entanglement: Exploiting local resources”, Physics Letters A, Vol.341, No.1-4, pp.9-14, 2005.
    A. Chamoli and C.M. Bhandari, “Teleportation of unknown state by qutrits”, International Journal of Quantum Information, Vol.6, No.2, pp.369-378, 2008.
    N.K. Langford, R.B. Dalton, M.D. Harvey, et al., “Measuring entangled qutrits and their use for quantum bit commitment”, Phys. Rev. Lett., Vol.93, No.5, Article ID.053601, 2004.
    D. Collins, N. Gisin, N. Linden, et al., “Bell inequalities for arbitrarily high-dimensional systems”, Phys. Rev. Lett., Vol.88, No.4, Article ID.040404, 2002.
    A.B. Klimov, R. Guzman, J.C. Retamal, et al., “Qutrit quantum computer with trapped ions”, Phys. Rev. A, Vol.67, No.6, Article ID.062313, 2003.
    Y.I. Bogdanov, M.V. Chekhova, K.P. Kulik, et al., “Qutrit state engineering with biphotons”, Phys. Rev. Lett., Vol.93, No.23, Article ID.230503, 2004.
    B.P. Lanyon, T.J. Weinhold, N.K. Langford, et al., “Manipulating biphotonic qutrits”, Phys. Rev. Lett., Vol.100, No.6, Article ID.060504, 2008.
    T. Ma, J. Jing, Y. Guo, et al., “Quantum feedback control for qubit-qutrit entanglement”, Quantum Information & Computation, Vol.16, No.7-8, pp.597-614, 2016.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (138) PDF downloads(336) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint