Citation: | ZHANG Li, HAO Shengang, ZHANG Quanxin, “A Fine-Grained Flash-Memory Fragment Recognition Approach for Low-Level Data Recovery,” Chinese Journal of Electronics, vol. 31, no. 4, pp. 732-740, 2022, doi: 10.1049/cje.2020.00.206 |
[1] |
W. Wang, X. Wang, D. Feng, et al., “Exploring permission-induced risk in android applications for malicious application detection,” IEEE Transactions on Information Forensics and Security, vol.9, no.11, pp.1869–1882, 2014. doi: 10.1109/TIFS.2014.2353996
|
[2] |
X. Yu, Y. Tan, Z. Sun, et al., “A fault-tolerant and energy-efficient continuous data protection system,” Journal of Ambient Intelligence and Humanized Computing, vol.10, no.8, pp.2945–2954, 2019. doi: 10.1007/s12652-018-0726-2
|
[3] |
W. Meng, W. Li and L. F. Kwok, “EFM: Enhancing the performance of signature-based network intrusion detection systems using enhanced filter mechanism,” Computers & Security, vol.43, pp.189–204, 2014.
|
[4] |
Q. Zhang, Y. Gan, L. Liu, et al., “An authenticated asymmetric group key agreement based on attribute encryption,” Journal of Network and Computer Applications, vol.123, pp.1–10, 2018. doi: 10.1016/j.jnca.2018.08.013
|
[5] |
Z. Guan, X. Liu, L. Wu, et al., “Cross-lingual multi-keyword rank search with semantic extension over encrypted data,” Information Sciences, vol.514, pp.523–540, 2020. doi: 10.1016/j.ins.2019.11.013
|
[6] |
V. Roussev and S. L. Garfinkel, “File fragment classification-the case for specialized approaches,” in Proceedings of Fourth International IEEE Workshop on Systematic Approaches to Digital Forensic Engineering, IEEE, Berkeley, CA, USA, pp.3–14, 2009.
|
[7] |
P. Penrose, R. MacFarlane, and W. J. Buchanan, “Approaches to the classification of high entropy file fragments,” Digital Investigation, vol.10, no.4, pp.372–384, 2013. doi: 10.1016/j.diin.2013.08.004
|
[8] |
T. T. Xu, M. Xu, Y. Z. Ren, et al., “A file fragment classification method based on grayscale image,” Journal of Computers, vol.9, no.8, pp.1863–1870, 2014.
|
[9] |
V. Roussev and C. Quates, “File fragment encoding classificationd—An empirical approach,” Digital Investigation, vol.10, no.Supplement, pp.S69–S77, 2013. doi: 10.1016/j.diin.2013.06.008
|
[10] |
M. McDaniel and M. H. Heydari, “Content based file type detection algorithms,” in Proc. of 36th Annual Hawaii International Conference on System Sciences, IEEE, Big Island, HI, USA, DOI: 10.1109/HICSS.2003.1174905, 2003.
|
[11] |
W. J. Li, K. Wang, S. J. Stolfo, et al., “Fileprints: Identifying file types by n-gram analysis,” in Proceedings of the Sixth Annual IEEE SMC Information Assurance Workshop, IEEE, West Point, NY, USA, pp.64–71, 2005.
|
[12] |
S. L. Garfinkel, “Carving contiguous and fragmented files with fast object validation,” Digital Investigation, vol.4, pp.2–12, 2007. doi: 10.1016/j.diin.2007.06.017
|
[13] |
C. J. Veenman, “Statistical disk cluster classification for file carving,” in Proc. of Third Int. Symp. on Information Assurance and Security, Manchester, UK, pp.393–398, 2007.
|
[14] |
W. C. Calhoun and D. Coles, “Predicting the types of file fragments,” Digital Investigation, vol.5, no.Supplement, pp.S14–S20, 2008. doi: 10.1016/j.diin.2008.05.005
|
[15] |
S. Axelsson, “The normalised compression distance as a file fragment classifier,” Digital Investigation, vol.7, no.Supplement, pp.S24–S31, 2010. doi: 10.1016/j.diin.2010.05.004
|
[16] |
S. Axelsson, K. A. Bajwa, and M. V. Srikanth, “File fragment analysis using normalized compression distance,” in Advances in Digital Forensics IX, Berlin, Heidelberg: Springer Berlin Heidelberg, pp.171–182, 2013.
|
[17] |
N. L. Beebe, L. A. Maddox, L. Liu, et al., “Sceadan: Using concatenated N-gram vectors for improved file and data type classification,” IEEE Transactions on Information Forensics and Security, vol.8, no.9, pp.1519–1530, 2013. doi: 10.1109/TIFS.2013.2274728
|
[18] |
K. Chen, Z. Du, S. Ye, et al., “Research on coarse/fine read algorithm based on a NAND flash page buffer design,” Acta Electronica Sinica, vol.46, no.11, pp.2619–2625, 2018. (in Chinese)
|
[19] |
Y. Xue, Y. Tan, C. Liang, et al., “RootAgency: A digital signature-based root privilege management agency for cloud terminal devices,” Information Sciences, vol.444, pp.36–50, 2018. doi: 10.1016/j.ins.2018.02.069
|
[20] |
J. Shu, S. Liu, L. Liu, et al., “Research on link quality estimation mechanism for wireless sensor networks based on support vector machine,” Chinese Journal of Electronics, vol.26, no.2, pp.377–384, 2017. doi: 10.1049/cje.2017.01.013
|
[21] |
Y. Wu, J. Li, C. Song, et al., “Words in pairs neural networks for text classification,” Chinese Journal of Electronics, vol.29, no.3, pp.491–500, 2020. doi: 10.1049/cje.2020.03.005
|
[22] |
Y. Song, S. Yao, D. Yu, et al., “A new K-ary crisp decision tree induction with continuous valued attributes,” Chinese Journal of Electronics, vol.26, no.5, pp.999–1007, 2017. doi: 10.1049/cje.2017.07.015
|
[23] |
X. Wang, J. Li, X. Kuang, et al., “The security of machine learning in an adversarial setting: A survey,” Journal of Parallel and Distributed Computing, vol.130, pp.12–23, 2019. doi: 10.1016/j.jpdc.2019.03.003
|
[24] |
Z. Guan, Y. Zhang, L. Zhu, et al., “EFFECT: An efficient flexible privacy-preserving data aggregation scheme with authentication in smart grid,” Science China (Information Sciences), vol.62, no.3, pp.31–44, 2019.
|
[25] |
W. Li, W. Meng, Z. Tan, et al., “Design of multi-view based email classification for IoT systems via semi-supervised learning,” Journal of Network and Computer Applications, vol.128, pp.56–63, 2019. doi: 10.1016/j.jnca.2018.12.002
|
[26] |
L. Zhang, S. Hao, and Q. Zhang, “Recovering SQLite data from fragmented flash pages,” Annals of Telecommunications, vol.74, no.7-8, pp.451–460, 2019. doi: 10.1007/s12243-019-00707-9
|
[27] |
Y. Li, S. Yao, K. Yang, et al., “A high-imperceptibility and histogram-shifting data hiding scheme for JPEG images,” IEEE Access, vol.7, pp.73573–73582, 2019. doi: 10.1109/ACCESS.2019.2920178
|
[28] |
M. Shen, B. Ma, L. Zhu, et al., “Cloud-based approximate constrained shortest distance queries over encrypted graphs with privacy protection,” IEEE Transactions on Information Forensics and Security, vol.13, no.4, pp.940–953, 2018. doi: 10.1109/TIFS.2017.2774451
|
[29] |
X. F. Gao, Y. A. Tan, H. W. Jiang, et al., “Boosting targeted black-box attacks via ensemble substitute training and linear augmentation,” Applied Sciences, vol.9, no.11, article no.2286, 2019. doi: 10.3390/app9112286
|
[30] |
L. Sportiello and S. Zanero, “File block classification by support vector machine,” in Proceedings of Sixth International Conference on Availability, Reliability and Security, Vienna, Austria, pp.307–312, 2011.
|
[31] |
Wikipedia, “Lempel-Ziv complexity specification,” available at: https://en.wikipedia.org/wiki/Lempel-Ziv_complexity, 2018-8-17.
|
[32] |
F. Chang, C. Y. Guo, X. Lin, et al., “Tree decomposition for large-scale SVM problems,” in Proceedings of International Conference on Technologies and Applications of Artificial Intelligence, Hsinchu, China, pp.233–240, 2010.
|
[33] |
S. Garfinkel, P. Farrell, V. Roussev, et al., “Bringing science to digital forensics with standardized forensic corpora,” Digital Investigation, vol.6, no.Supplement, pp.S2–S11, 2009. doi: 10.1016/j.diin.2009.06.016
|