Citation: | YANG Jiyun, TANG Jiang, YAN Ran, et al., “Android Malware Detection Method Based on Permission Complement and API Calls,” Chinese Journal of Electronics, vol. 31, no. 4, pp. 773-785, 2022, doi: 10.1049/cje.2020.00.217 |
[1] |
IDC, “Smartphone market share,” available at: http://www.idc.com/prodserv/smartphone-os-market-share.jsp, 2020.
|
[2] |
Forbes, “Many popular android apps leak sensitive data, leaving millions of consumers at risk,” available at: https://www.forbes.com/sites/ajdellinger/2019/06/07/many-popularandroid-apps-leak-sensitive-data-leaving-millions-of-consumers-atrisk/, 2019.
|
[3] |
Symantec, Internet Security Threat Report, vol.3, available at: https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf, Mountain View, CA, USA: Symantec Corporation, 2019.
|
[4] |
Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, et al., “StaDynA: Addressing the problem of dynamic code updates in the security analysis of android applications,” in Proceedings of the 5th ACM Conference on Data and Application Security and Privacy (CODASPY’15), San Antonio, TX, USA, pp.37–48, 2015.
|
[5] |
M. Ahmad, V. Costamagna, B. Crispo, et al., “StaDART: Addressing the problem of dynamic code updates in the security analysis of android applications,” Journal of Systems and Software, vol.159, article no.110386, 2020. doi: 10.1016/j.jss.2019.07.088
|
[6] |
S. Poeplau, Y. Fratantonio, A. Bianchi, et al., “Execute this! Analyzing unsafe and malicious dynamic code loading in Android applications,” in Proceedings 2014 Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, pp.23–26, 2014.
|
[7] |
L. Breiman, “Random forests,” Machine Learning, vol.45, no.1, pp.5–32, 2001. doi: 10.1023/A:1010933404324
|
[8] |
D. Arp, M. Spreitzenbarth, M. Hübner, et al., “DREBIN: Effective and explainable detection of Android malware in your pocket,” in Proceedings of 2014 Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, pp.35–40, 2014.
|
[9] |
J. Li, L. Sun, Q. Yan, et al., “Significant permission identification for machine-learning-based android malware detection,” IEEE Transactions on Industrial Informatics, vol.14, no.7, pp.3216–3225, 2018. doi: 10.1109/TII.2017.2789219
|
[10] |
A. Martín, R. Lara-Cabrera, and D. Camacho, “Android malware detection through hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset,” Information Fusion, vol.52, pp.128–142, 2019. doi: 10.1016/j.inffus.2018.12.006
|
[11] |
A. I. Aysan, F. Sakiz, and S. Sen, “Analysis of dynamic code updating in Android with security perspective,” IET Information Security, vol.13, no.3, pp.269–277, 2019. doi: 10.1049/iet-ifs.2018.5316
|
[12] |
A. P. Felt, E. Chin, S. Hanna, et al., “Android permissions demystified,” in Proceedings of the 18th ACM Conference on Computer and Communications Security (CCS’11), Chicago, IL, USA, pp.627–638, 2011.
|
[13] |
M. Scalas, D. Maiorca, F. Mercaldo, et al., “On the effectiveness of system API-related information for Android ransomware detection,” Computers & Security, vol.86, pp.168–182, 2019.
|
[14] |
P. Vinod, A. Zemmari, and M. Conti, “A machine learning based approach to detect malicious android apps using discriminant system calls,” Future Generation Computer Systems, vol.94, pp.333–350, 2019. doi: 10.1016/j.future.2018.11.021
|
[15] |
C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol.2, no.2, pp.121–167, 1998. doi: 10.1023/A:1009715923555
|
[16] |
G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep belief nets,” Neural Computation, vol.18, no.7, pp.1527–1554, 2006. doi: 10.1162/neco.2006.18.7.1527
|
[17] |
Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of Computer and System Sciences, vol.55, no.1, pp.119–139, 1997. doi: 10.1006/jcss.1997.1504
|
[18] |
R. Raphael, P. Vinod, and B. Omman, “X-ANOVA ranked features for Android malware analysis,” 2014 Annual IEEE India Conference (INDICON), Pune, India, pp.1–6, 2014.
|
[19] |
W. Yang, X. Xiao, B. Andow, et al., “AppContext: Differentiating malicious and benign mobile app behaviors using context,” in Proceedings of IEEE/ACM 37th IEEE International Conference on Software Engineering, Florence, Italy, pp.303–313, 2015.
|
[20] |
T. Yang, H. Cui, and S. Niu, “Dynamic loading vulnerability detection for android applications through ensemble learning,” Chinese Journal of Electronics, vol.26, no.5, pp.960–965, 2017. doi: 10.1049/cje.2017.07.001
|
[21] |
W. Wang, Y. Li, X. Wang, et al., “Detecting Android malicious apps and categorizing benign apps with ensemble of classifiers,” Future Generation Computer Systems, vol.78, pp.987–994, 2018. doi: 10.1016/j.future.2017.01.019
|
[22] |
H. Zhu, Z. You, Z. Zhu, et al., “DroidDet: Effective and robust detection of android malware using static analysis along with rotation forest model,” Neurocomputing, vol.272, pp.638–646, 2018. doi: 10.1016/j.neucom.2017.07.030
|
[23] |
A. Pektaş and T. Acarman, “Learning to detect Android malware via opcode sequences,” Neurocomputing, vol.396, pp.599–608, 2020. doi: 10.1016/j.neucom.2018.09.102
|
[24] |
S. Y. Yerima, S. Sezer, and G. McWilliams, “Analysis of Bayesian classification-based approaches for Android malware detection,” IET Information Security, vol.8, no.1, pp.25–36, 2014. doi: 10.1049/iet-ifs.2013.0095
|
[25] |
S. Liang and X. Du, “Permission-combination-based scheme for Android mobile malware detection,” in Proceedings of International Conference on Communications, Sydney, Australia, pp.2301–2306, 2014.
|
[26] |
A. Martín, V. Rodríguez-Fernández, and D. Camacho, “CANDYMAN: Classifying Android malware families by modelling dynamic traces with Markov chains,” Engineering Applications of Artificial Intelligence, vol.74, pp.121–133, 2018. doi: 10.1016/j.engappai.2018.06.006
|
[27] |
Y. Xue, G. Meng, Y. Liu, et al., “Auditing anti-malware tools by evolving android malware and dynamic loading technique,” IEEE Transactions on Information Forensics and Security, vol.12, no.7, pp.1529–1544, 2017. doi: 10.1109/TIFS.2017.2661723
|
[28] |
S. Wang, Z. Chen, L. Zhang, et al., “TrafficAV: An effective and explainable detection of mobile malware behavior using network traffic,” in Proceedings of IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), Beijing, China, pp.1–6, 2016.
|
[29] |
X. Xiao, Z. Wang, Q. Li, et al., “Back-propagation neural network on Markov chains from system call sequences: A new approach for detecting Android malware with system call sequences,” IET Information Security, vol.11, no.1, pp.8–15, 2017. doi: 10.1049/iet-ifs.2015.0211
|
[30] |
P. Feng, J. Ma, C. Sun, et al., “A novel dynamic android malware detection system with ensemble learning,” IEEE Access, vol.6, pp.30996–31011, 2018. doi: 10.1109/ACCESS.2018.2844349
|
[31] |
J. Li, Z. Wang, T. Wang, et al., “An android malware detection system based on feature fusion,” Chinese Journal of Electronics, vol.27, no.6, pp.1206–1213, 2018. doi: 10.1049/cje.2018.09.008
|
[32] |
D. Sbîrlea, M. G. Burke, S. Guarnieri, et al., “Automatic detection of inter-application permission leaks in Android applications,” IBM Journal of Research and Development, vol.57, no.6, pp.10:1–10:12, 2013. doi: 10.1147/JRD.2013.2284403
|