Citation: | CHEN Junfeng and WANG Xue, “Non-intrusive Load Monitoring Using Gramian Angular Field Color Encoding in Edge Computing,” Chinese Journal of Electronics, vol. 31, no. 4, pp. 595-603, 2022, doi: 10.1049/cje.2020.00.268 |
[1] |
L. Yu, X. Jin, Z. Li, et al., “An intelligent scheduling approach for electric power generation,” Chinese Journal of Electronics, vol.27, no.6, pp.1170–1175, 2018. doi: 10.1049/cje.2018.09.013
|
[2] |
Y. Wang, J. Li, X. Chen, et al., “Remote attestation for intelligent electronic devices in smart grid based on trusted level measurement,” Chinese Journal of Electronics, vol.29, no.3, pp.437–446, 2020. doi: 10.1049/cje.2020.02.019
|
[3] |
H. Qiu, Z. Zhang, W. Wang, et al., “Meter reading aggregation scheme with universally symbolic analysis for smart grid,” Chinese Journal of Electronics, vol.28, no.3, pp.577–584, 2019. doi: 10.1049/cje.2019.03.014
|
[4] |
National Bureau of Statistics of China, “Consumption of Energy by Sector,” Available at: http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm, 2019.
|
[5] |
L. Wang, X. Chen, G. Wang, et al., “Non-intrusive load monitoring algorithm based on features of V-I trajectory,” Electric Power Systems Research, vol.157, pp.134–144, 2018. doi: 10.1016/j.jpgr.2017.12.012
|
[6] |
J. M. Gillis, J. A. Chung, and W. G. Morsi, “Designing new orthogonal high-order wavelets for nonintrusive load monitoring,” IEEE Transactions on Industrial Electronics, vol.65, no.3, pp.2578–2589, 2017. doi: 10.1109/TIE.2017.2739701
|
[7] |
J. M. Gillis, S. M. Alshareef, and W. G. Morsi, “Nonintrusive load monitoring using wavelet design and machine learning,” IEEE Transactions on Smart Grid, vol.7, no.1, pp.320–328, 2015. doi: 10.1109/TSG.2015.2428706
|
[8] |
GAO Jingkun, E. C. Kara, S. Giri, et al., “A feasibility study of automated plug-load identification from high-frequency measurements,” 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, pp.220–224, 2015.
|
[9] |
M. Figueiredo, A. De Almeida, and B. Ribeiro, “Home electrical signal disaggregation for non-intrusive load monitoring (NILM) systems,” Neurocomputing, vol.96, pp.66–73, 2012. doi: 10.1016/j.neucom.2011.10.037
|
[10] |
D. Meng and L. Sun, “Some new trends of deep learning research,” Chinese Journal of Electronics, vol.28, no.6, pp.1087–1091, 2019. doi: Somenewtrendsofdeeplearningresearch
|
[11] |
Z. Zhang, B. Wang, Z. Yu, et al., “Dilated convolutional pixels affinity network for weakly supervised Semantic segmentation,” Chinese Journal of Electronics, vol.30, no.6, pp.1120–1130, 2021. doi: 10.1049/cje.2021.08.007
|
[12] |
L. Fu, Y. Du, Y. Ding, et al., “Domain adaptive learning with multi-granularity features for unsupervised person re-identification,” Chinese Journal of Electronics, vol.31, no.1, pp.116–128, 2022. doi: 10.1049/cje.2020.00.072
|
[13] |
C. -F. Lai, W. -C. Chien, L. T. Yang, et al., “LSTM and edge computing for big data feature recognition of industrial electrical equipment,” IEEE Transactions on Industrial Informatics, vol.15, no.4, pp.2469–2477, 2019. doi: 10.1109/TII.2019.2892818
|
[14] |
L. De Baets, J. Ruyssinck, C. Develder, et al., “Appliance classification using VI trajectories and convolutional neural networks,” Energy and Buildings, vol.158, pp.32–36, 2018. doi: 10.1016/j.enbuild.2017.09.087
|
[15] |
Y. Liu, X. Wang, and W. You, “Non-intrusive load monitoring by voltage-current trajectory enabled transfer learning,” IEEE Transactions on Smart Grid, vol.10, no.5, pp.5609–5619, 2019. doi: 10.1109/TSG.2018.2888581
|
[16] |
WANG Zhiguang and T. Oates, “Encoding time series as images for visual inspection and classification using tiled convolutional neural networks,” Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin Texas, USA, available at: https://www.researchgate.net/publication/275970614_Encoding_Time_Series_as_Images_for_Visual_Inspection_and_Classification_Using_Tiled_Convolutional_Neural_Networks, 2015.
|
[17] |
ETSI, “Mobile-edge computing-introductory technical white paper,” Available at: https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introduc-tory_Technical_White_Paper_V1%2018-09-14.pdf, 2014.
|
[18] |
W. Shi, J. Cao, Q. Zhang, et al., “Edge computing: Vision and challenges,” IEEE Internet of Things Journal, vol.3, no.5, pp.637–646, 2016. doi: 10.1109/JIOT.2016.2579198
|
[19] |
Q. Wu, F. He, and X. Fan, “The intelligent control system of traffic light based on fog computing,” Chinese Journal of Electronics, vol.27, no.6, pp.1265–1270, 2018. doi: 10.1049/cje.2018.09.015
|
[20] |
S. Xu, P. Li, F. Qi, et al., “Load-balancing and QoS based dynamic resource allocation method for smart gird fiber-wireless networks,” Chinese Journal of Electronics, vol.28, no.6, pp.1234–1243, 2019. doi: 10.1049/cje.2019.08.007
|
[21] |
X. Wang, Y. Han, Victor C. M. Leung, et al., “Convergence of edge computing and deep learning: A comprehensive survey,” IEEE Communications Surveys and Tutorials, vol.22, no.2, pp.869–904, 2020. doi: 10.1109/COMST.2020.2970550
|
[22] |
I. Abubakar, S. Khalid, M. Mustafa, et al., “Application of load monitoring in appliances’ energy management – A review,” Renewable and Sustainable Energy Reviews, vol.67, pp.235–245, 2017. doi: 10.1016/j.rser.2016.09.064
|
[23] |
D. F. Teshome, T. Huang, and K.-L. Lian, “Distinctive load feature extraction based on Fryze’s time-domain power theory,” IEEE Power and Energy Technology Systems Journal, vol.3, no.2, pp.60–70, 2016. doi: 10.1109/JPETS.2016.2559507
|
[24] |
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Communications of the ACM, vol.60, no.6, pp.84–90, 2017. doi: 10.1145/3065386
|
[25] |
GAO Jingkun, S. Giri, E. C. Kara, et al., “PLAID: A public dataset of high-resolution electrical appliance measurements for load identification research: Demo abstract,” in Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, Memphis, USA, pp.198–199, 2014.
|
[26] |
M. Kahl, A. U. Haq, T. Kriechbaumer, et al., “Whited-a worldwide household and industry transient energy data set,” 3rd International Workshop on Non-Intrusive Load Monitoring, Vancouver, Canada, available at: https://www.semanticscholar.org/paper/WHITED-A-Worldwide-Household-and-Industry-Transient-Kahl-Haq/766b29cd47987be0e7b2bbb9fcc9df351d5041cc, 2016.
|
[27] |
N. Sadeghianpourhamami, J. Ruyssinck, D. Deschrijver, et al., “Comprehensive feature selection for appliance classification in NILM,” Energy and Buildings, vol.151, pp.98–106, 2017. doi: 10.1016/j.enbuild.2017.06.042
|
[28] |
J.-H. Kim, “Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap,” Computational Statistics & Data Analysis, vol.53, no.11, pp.3735–3745, 2009. doi: 10.1016/j.csda.2009.04.009
|
[29] |
R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,” in Proc. of the 14th International Joint Conference on Artificial Intelligence, Montreal Quebec Canada, pp.1137–1143, 1995.
|
[30] |
Makonin S and Popowich F, “Nonintrusive load monitoring (NILM) performance evaluation,” Energy Efficiency, vol.8, no.4, pp.809–814, 2015. doi: 10.1007/s12053-014-9306-2
|
[31] |
G. W. Hart, “Nonintrusive appliance load monitoring,” Proceedings of the IEEE, vol.80, no.12, pp.1870–1891, 1992. doi: 10.1109/5.192069
|
[32] |
Zoha A, Gluhak A, Imran M, et al., “Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey,” Sensors, vol.12, no.12, pp.16838–16866, 2012. doi: 10.3390/s121216838
|