Citation: | YAO Shisen, CHENG Yujian, BAI Hang, et al., “W-Band High-Efficiency Waveguide Slot Array Antenna with Low Sidelobe Levels Based on Silicon Micromachining Technology,” Chinese Journal of Electronics, vol. 31, no. 4, pp. 665-673, 2022, doi: 10.1049/cje.2020.00.315 |
[1] |
B. Fan, Y. Li, R. Zhang, and Q. Fu, “Review on the technological development and application of UAV systems,” Chinese Journal of Electronics, vol.29, no.2, pp.199–207, 2020. doi: 10.1049/cje.2019.12.006
|
[2] |
S. Tang and J. Mao, “Evaluation model and method of margin in electromagnetic environmental effects for complex systems,” Chinese Journal of Electronics, vol.30, no.1, pp.171–179, 2021. doi: 10.1049/cje.2020.12.006
|
[3] |
Y. R. Ding and Y. J. Cheng, “A tri-band shared-aperture antenna for (2.4, 5.2) GHz Wi-Fi application with MIMO function and 60 GHz Wi-Gig application with beam-scanning function,” IEEE Transactions on Antennas and Propagation, vol.68, no.3, pp.1973–1981, 2020. doi: 10.1109/TAP.2019.2948571
|
[4] |
A. Dewantari, J. Kim, S. Jeon, S. Kim, and M. Ka, “Flared SIW antenna design and transceiving experiments for W-band SAR,” International Journal of RF and Microwave Computer-Aided Engineering, vol.28, no.9, pp.1–9, 2018.
|
[5] |
H. B. Wang and Y. J. Cheng, “Single-layer dual-band linear-to-circular polarization converter with wide axial ratio bandwidth and different polarization modes,” IEEE Transactions on Antennas and Propagation, vol.67, no.6, pp.4296–4301, 2019. doi: 10.1109/TAP.2019.2905962
|
[6] |
J. X. Sun, Y. J. Cheng, and Y. Fan, “Planar ultra-wideband and wide-scanning dual-polarized phased array with integrated coupled-marchand balun for high polarization isolation and low cross-polarization,” IEEE Transactions on Antennas and Propagation, vol.69, no.11, pp.7134–7144, 2021. doi: 10.1109/TAP.2021.3060136
|
[7] |
H. B. Wang, Y. J. Cheng, and Z. N. Chen, “Dual-band miniaturized linear-to-circular metasurface polarization converter with wideband and wide-angle axial ratio,” IEEE Transactions on Antennas and Propagation, vol.69, no.12, pp.9021–9025, 2021. doi: 10.1109/TAP.2021.3083820
|
[8] |
W. Wu, H. Zhao, J. Huang, Q. Feng, and C. Wang, “Study of a new type of SIW end slot antenna at X-band,” Chinese Journal of Electronics, vol.23, no.4, pp.862–865, 2014.
|
[9] |
J. Sun and F. Hu, “Three-dimensional printing technologies for terahertz applications: A review,” International Journal of RF and Microwave Computer-Aided Engineering, vol.30, no.1, pp.171–179, 2021.
|
[10] |
Y. Li, L. Ge, J. Wang, B. Ai, M. Chen, Z. Zhang, and Z. Li, “A Ka-band 3-D-printed wideband stepped waveguide-fed magnetoelectric dipole antenna array,” IEEE Transactions on Antennas and Propagation, vol.68, no.4, pp.2724–2735, 2020. doi: 10.1109/TAP.2019.2950868
|
[11] |
M. Zhang, K. Toyosaki, J. Hirokawa, M. Ando, et al., “A 60-GHz band compact-range gigabit wireless access system using large array antennas,” IEEE Transactions on Antennas and Propagation, vol.63, no.8, pp.3432–3440, 2015. doi: 10.1109/TAP.2015.2434397
|
[12] |
M. Zhang, J. Hirokawa, and M. Ando, “A four-corner-fed double-layer waveguide slot array with low sidelobes developed for a 40 GHz-band DDD system,” IEEE Transactions on Antennas and Propagation, vol.64, no.5, pp.2005–2010, 2016. doi: 10.1109/TAP.2016.2539375
|
[13] |
X. Xu, M. Zhang, J. Hirokawa, and M. Ando, “E-band plate-laminated waveguide filters and their integration into a corporate-feed slot array antenna with diffusion bonding technology,” IEEE Transactions on Microwave Theory and Techniques, vol.64, no.11, pp.3592–3603, 2016. doi: 10.1109/TMTT.2016.2602859
|
[14] |
D. Kim, Y. Lim, H. Yoon, and S. Nam, “High-efficiency W-band electroforming slot array antenna,” IEEE Transactions on Antennas and Propagation, vol.63, no.4, pp.1854–1857, 2015. doi: 10.1109/TAP.2015.2398129
|
[15] |
Z. Qi, Y. Huang, and X. Li, “140GHz low-profile and high-gain slot array antennas,” The 6th Asia-Pacific Conference on Antennas and Propagation, Xi’an, China, pp.1–3, 2017.
|
[16] |
K. Tekkouk, J. Hirokawa, K. Oogimoto, et al., “Corporate-feed slotted waveguide array antenna in the 350-GHz band by silicon process,” IEEE Transactions on Antennas and Propagation, vol.65, no.1, pp.217–225, 2017. doi: 10.1109/TAP.2016.2631132
|
[17] |
L. Chang, Y. Li, Z. Zhang, S. Wang, and Z. Feng, “Planar air-filled terahertz antenna array based on channelized coplanar waveguide using hierarchical silicon bulk micromachining,” IEEE Transactions on Antennas and Propagation, vol.66, no.10, pp.5318–5325, 2018. doi: 10.1109/TAP.2018.2862360
|
[18] |
P. Zhao, Y. Liu, and X. Lv, “Experimental realization of micromachined terahertz multistepped quasi-diagonal horn antenna,” Microwave and Optical Technology Letters, vol.59, no.10, pp.2644–2648, 2017. doi: 10.1002/mop.30800
|
[19] |
S. S. Yao, Y. J. Cheng, M. M. Zhou, Y. F. Wu, and Y. Fan, “D-band wideband air-filled plate array antenna with multistage impedance matching based on MEMS micromachining technology,” IEEE Transactions on Antennas and Propagation, vol.68, no.6, pp.4502–4511, 2020. doi: 10.1109/TAP.2020.2969890
|
[20] |
Q. Wang, Y. Duan, and B. Lu, “A novel three-dimensional microstructure fabrication method based on multilevel imprint lithography,” Chinese Journal of Electronics, vol.18, no.4, pp.583–587, 2009.
|
[21] |
L. Chang, Y. Li, Z. Zhang, et al., “Low-sidelobe air-filled slot array fabricated using silicon micromachining technology for millimeter-wave application,” IEEE Transactions on Antennas and Propagation, vol.65, no.8, pp.4067–4074, 2017. doi: 10.1109/TAP.2017.2717971
|
[22] |
H. Chu, J. Chen, and Y. Guo, “An efficient gain enhancement approach for 60-GHz antenna using fully integrated vertical metallic walls in LTCC,” IEEE Transactions on Antennas and Propagation, vol.64, no.10, pp.4513–4518, 2016. doi: 10.1109/TAP.2016.2593717
|
[23] |
S. B. Yeap, Z. N. Chen, and X. Qing, “Gain-enhanced 60-GHz LTCC antenna array with open air cavities,” IEEE Transactions on Antennas and Propagation, vol.59, no.9, pp.3470–3473, 2011. doi: 10.1109/TAP.2011.2161549
|
[24] |
R. S. Elliott, “An improved design procedure for small arrays of shunt slots,” IEEE Transactions on Antennas and Propagation, vol.31, no.1, pp.48–53, 1983. doi: 10.1109/TAP.1983.1143002
|
[25] |
R. S. Elliott and W. R. O’Loughlin, “The design of slot arrays including internal mutual coupling,” IEEE Transactions on Antennas and Propagation, vol.34, no.9, pp.1149–1154, 1986. doi: 10.1109/TAP.1986.1143947
|
[26] |
R. Bayderkhani and H. R. Hassani, “Wideband and low sidelobe slot antenna fed by series-fed printed array,” IEEE Transactions on Antennas and Propagation, vol.58, no.12, pp.3898–3904, 2010. doi: 10.1109/TAP.2010.2078437
|
[27] |
Y. F. Wu and Y. J. Cheng, “Conical conformal shaped-beam substrate-integrated waveguide slot array antenna with conical-to-cylindrical transition,” IEEE Transactions on Antennas and Propagation, vol.65, no.8, pp.4048–4056, 2017. doi: 10.1109/TAP.2017.2716404
|
[28] |
G. L. Huang, S. G. Zhou, T. H. Chio, H. T. Hui, and T. S. Yeo, “A low profile and low sidelobe wideband slot antenna array fed by an amplitude-tapering waveguide feed-network,” IEEE Transactions on Antennas and Propagation, vol.63, no.1, pp.419–423, 2015. doi: 10.1109/TAP.2014.2365238
|
[29] |
T. Potelon, M. Ettorre, and R. Sauleau, “Long slot array fed by a nonuniform corporate feed network in PPW technology,” IEEE Transactions on Antennas and Propagation, vol.67, no.8, pp.5436–5445, 2019. doi: 10.1109/TAP.2019.2917581
|
[30] |
R. Shen, X. Ye, J. Xie, Z. Chen, and C. Jin, “A W-band circular box-horn antenna array radiating sum and difference beams with suppressed sidelobe,” IEEE Transactions on Antennas and Propagation, vol.67, no.9, pp.5934–5942, 2019. doi: 10.1109/TAP.2019.2920358
|
[31] |
H. Bai, Y. J. Cheng, and S. S. Yao, “High-efficiency two-dimensional low side-lobe level MEMS sub arrayed antenna array,” the 8th Asia-Pacific Conference on Antennas and Propagation, Inchon, Korea (South), pp. 286−288, 2019.
|
[32] |
R. Camblor, S. V. Hoeye, M. Fernández, C. V. Antuña, and F. Las-Heras, “Submillimeter wavelength 2-D frequency scanning antenna based on slotted waveguides fed through a phase shifting network,” IEEE Transactions on Antennas and Propagation, vol.65, no.7, pp.3501–3509, 2017. doi: 10.1109/TAP.2017.2700205
|