Citation: | ZHANG Pingyue, ZHANG Mengtian, LIU Hui, YANG Yang. Prediction of Protein Subcellular Localization Based on Microscopic Images via Multi-Task Multi-Instance Learning[J]. Chinese Journal of Electronics. doi: 10.1049/cje.2020.00.330 |
[1] |
K. Nakai, P. Horton, “PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization,” Trends in Biochemical Sciences, vol.24, no.1, pp.34–36, 1999. doi: 10.1016/S0968-0004(98)01336-X
|
[2] |
X. Yang, X. Lei, J. Zhao, “Essential Protein Prediction Based on Shuffled Frog-Leaping Algorithm,” Chinese Journal of Electronics, vol.30, no.4, pp.704–711, 2021. doi: 10.1049/cje.2021.05.012
|
[3] |
X. Wang, Y. Cheng, L. Li, “Protein Function Prediction Based on Active Semi-supervised Learning,” Chinese Journal of Electronics, vol.25, no.4, pp.595–600, 2016. doi: 10.1049/cje.2016.07.005
|
[4] |
S. Briesemeister, J. Rahnenführer and O. Kohlbacher, “YLoc—an interpretable web server for predicting subcellular localization,” Nucleic acids research, vol.38, pp.W497–W502, 2010. doi: 10.1093/nar/gkq477
|
[5] |
K. J. Park and M. Kanehisa, “Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs,” Bioinformatics, vol.19, no.13, pp.1656–1663, 2003. doi: 10.1093/bioinformatics/btg222
|
[6] |
A. Pierleoni, P. L. Martelli, P. Fariselli, et al., “BaCelLo: a balanced subcellular localization predictor,” Bioinformatics, vol.22, no.14, pp.e408–e416, 2006. doi: 10.1093/bioinformatics/btl222
|
[7] |
S. M. Chi and D. Nam, “WegoLoc: accurate prediction of protein subcellular localization using weighted Gene Ontology terms,” Bioinformatics, vol.28, no.7, pp.1028–1030, 2012. doi: 10.1093/bioinformatics/bts062
|
[8] |
H. Zhou, Y. Yang and H. B. Shen, “Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features,” Bioinformatics, vol.33, no.6, pp.843–853, 2017.
|
[9] |
M. Uhlen, P. Oksvold, L. Fagerberg, et al., “Towards a knowledge-based human protein atlas,” Nature biotechnology, vol.28, no.12, pp.1248–1250, 2010. doi: 10.1038/nbt1210-1248
|
[10] |
Y. Y. Xu, H. B. Shen and R. F. Murphy, “Learning complex subcellular distribution patterns of proteins via analysis of immunohistochemistry images,” Bioinformatics, vol.36, no.6, pp.1908–1914, 2020. doi: 10.1093/bioinformatics/btz844
|
[11] |
W. Long, Y. Yang and H. B. Shen, “ImPLoc: a multi-instance deep learning model for the prediction of protein subcellular localization based on immunohistochemistry images,” Bioinformatics, vol.36, no.7, pp.2244–2250, 2020. doi: 10.1093/bioinformatics/btz909
|
[12] |
T. Peng, G. M. C. Bonamy, E. Glory-Afshar, et al., “Determining the distribution of probes between different subcellular locations through automated unmixing of subcellular patterns,” Proceedings of the National Academy of Sciences, vol.107, no.7, pp.2944–2949, 2010. doi: 10.1073/pnas.0912090107
|
[13] |
J. X. Hu, Y. Yang, Y. Y. Xu, H. B. Shen, “Incorporating label correlations into deep neural networks to classify protein subcellular location patterns in immunohistochemistry images”, Proteins: Structure, Function, and Bioinformatics, 2021 Sep 21.
|
[14] |
J. R. R. Uijlings, K. E. A. Van De Sande, T. Gevers, et al., “Selective search for object recognition,” International journal of computer vision, vol.104, no.2, pp.154–171, 2013. doi: 10.1007/s11263-013-0620-5
|
[15] |
K. He, X. Zhang, S. Ren, et al, “Deep residual learning for image recognition,” Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, pp.770–778, 2016.
|
[16] |
G. Huang, Z. Liu, L. Van Der Maaten, et al, “Densely connected convolutional networks,” Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, pp.4700–4708, 2017.
|
[17] |
A. Radford, L. Metz and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv preprint arXiv: 1511.06434, 2015.
|
[18] |
A. Vaswani, N. Shazeer, N. Parmar, et al, “Attention is all you need”, Advances in neural information processing systems, Long Beach, CA, USA, pp.5998-6008, 2017.
|