Citation: | SUN Xiaohui, WEN Chenglin, WEN Tao, “Maximum Correntropy High-Order Extended Kalman Filter,” Chinese Journal of Electronics, vol. 31, no. 1, pp. 190-198, 2022, doi: 10.1049/cje.2020.00.334 |
[1] |
C. B. Wen, Z. D. Wang, Q. Y. Liu, et al., “Recursive distributed filtering for a class of state-saturated systems with fading measurements and quantization effects,” IEEE Trans. on Systems, Man and Cybernetics: Systems, vol.48, no.6, pp.930–941, 2018. doi: 10.1109/TSMC.2016.2629464
|
[2] |
T. Wen, Q. B. Ge, X. Lyu, et al., “A cost-effective wireless network migration planning method supporting high-security enabled railway data communication systems,” Journal of the Franklin Institute, vol.35, no.6, pp.114–121, 2019.
|
[3] |
S. Y. Ji and C. L. Wen, “Data preprocessing method and fault diagnosis based on evaluation function of information contribution degree,” Journal of Control Science and Engineering, vol.2018, no.1, pp.1–10, 2018.
|
[4] |
X. Guo, L. L. Sun, T. Wen, et al., “Adaptive transition probability matrix-based parallel IMM algorithm,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol.19, no.14, pp.1–10, 2019.
|
[5] |
S. P. Talebi, S. Kanna, and D. P. Mandic, “A distributed quaternion Kalman filter with applications to smart grid and target tracking,” IEEE Transactions on Signal and Information Processing over Networks, vol.2, no.4, pp.477–488, 2016.
|
[6] |
T. Wen, C.B. Wen, C. Roberts, et al., “Distributed filtering for a class of discrete-time systems over wireless sensor networks,” Journal of the Franklin Institute, vol.357, no.5, pp.3038–3055, 2020. doi: 10.1016/j.jfranklin.2020.02.005
|
[7] |
G. Q. Wang, Y. G. Zhang, and X. D. Wang, “Iterated maximum correntropy unscented Kalman filters for non-Gaussian systems,” Signal Processing, vol.163, pp.87–94, 2019. doi: DOI:10.1016/j.sigpro.2019.05.015
|
[8] |
B. D. O. Anderson and J. B. Moore, Optimal Filtering, New York: Prentice-Hall, 1979.
|
[9] |
R. V. D. Merwe and E. A. Wan, “Sigma-point Kalman filters for integrated navigation,” in Proc. of the 60th Annual Meeting of the Institute of Navigation, Dayton, pp.641−654, 2004.
|
[10] |
S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE, vol.92, no.3, pp.401–422, 2004. doi: 10.1109/JPROC.2003.823141
|
[11] |
I. Arasaratnam and S. Haykin, “Cubature Kalman filters,” IEEE Transactions on Automatic Control, vol.54, no.6, pp.1254–1269, 2009.
|
[12] |
K. Ito and K. Xiong, “Gaussian filters for nonlinear filtering problems,” IEEE Transactions on Automatic Control, vol.45, no.5, pp.910–927, 2000. doi: 10.1109/9.855552
|
[13] |
J. M. Morris, “The Kalman filter: A robust estimator for some classes of linear quadratic problems,” IEEE Trans. on Information Theory, vol.22, no.5, pp.526–534, 1976. doi: 10.1109/TIT.1976.1055611
|
[14] |
Z. Z. Wu, J. H. Shi, X. Zhang, et al., “Kernel recursive maximum correntropy,” Signal Processing, vol.117, pp.11–16, 2015. doi: 10.1016/j.sigpro.2015.04.024
|
[15] |
B. D. Chen, X. Liu, H. Q. Zhao, et al., “Maximum correntropy Kalman filter,” Automatica, vol.76, pp.70–77, 2017. doi: 10.1016/j.automatica.2016.10.004
|
[16] |
X. Liu, H. Qu, J. H. Zhao, et al., “Extended Kalman filter under maximum correntropy criterion,” Int. Joint Conf. on Neural Networks, Vancouver, BC, pp.1733–1737, 2016.
|
[17] |
C. Zhang and H. S. Yan, “Identification of nonlinear time-varying system with noise based on multi-dimensional Taylor network with optimal structure,” Journal of Southeast University, vol.47, no.6, pp.1086–1093, 2017. (in Chinese)
|