Volume 29 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
ZOU Beiji, SHAN Xi, ZHU Chengzhang, et al., “Deep Learning and Its Application in Diabetic Retinopathy Screening,” Chinese Journal of Electronics, vol. 29, no. 6, pp. 992-1000, 2020, doi: 10.1049/cje.2020.09.001
Citation: ZOU Beiji, SHAN Xi, ZHU Chengzhang, et al., “Deep Learning and Its Application in Diabetic Retinopathy Screening,” Chinese Journal of Electronics, vol. 29, no. 6, pp. 992-1000, 2020, doi: 10.1049/cje.2020.09.001

Deep Learning and Its Application in Diabetic Retinopathy Screening

doi: 10.1049/cje.2020.09.001
Funds:  This work is supported by the National Natural Science Foundation of China (No.61702559, No.61902434), National Science and Technology Major Project (No.2018AAA0102102), the Planned Science and Technology Project of Hunan Province, China (No.2017WK2074), the Natural Science Foundation of Hunan Province, China (No.2018JJ3686, No.2019JJ50826), and the 111 Project (No.B18059).
More Information
  • Corresponding author: ZHU Chengzhang (corresponding author) received the Ph.D. degree from School of Information Science and Engineering, Central South University, Changsha, China, in 2016. She is currently a associate professor at Central South University, Changsha, China. Her research interests include medical image processing, computer vision and pattern recognition. (Email:anandawork@126.com)
  • Received Date: 2019-10-31
  • Publish Date: 2020-12-25
  • Deep learning (DL), especially Convolutional neural networks (CNN), has gained wide popularity in various image processing tasks. With the significant achievements obtained in DL, it has provided many successful solutions for real-world applications as well as in medical domain. Automated retinal images analysis has been widely applied to screening Diabetic retinopathy (DR), which can greatly help preventing the occurrence of complete blindness when used in the early screening. In this paper, we mainly focus on DL, and we will give an overview of the deep learning-based methods for DR screening. Finally, we will discuss the main issues encountered in the DR screening systems.
  • loading
  • M.I. Razzak, S. Naz and A. Zaib, Classification in BioApps, Springer, Berlin, German, pp.323-350, 2018.
    L. Ribeiro, C.M. Oliveira, C. Neves, et al., "Screening for diabetic retinopathy in the central region of Portugal. Added value of automated ‘Disease/No Disease’ grading", Ophthalmologica, Vol.233, No.2, pp.96-103, 2015.
    K. Solanki, C. Ramachandra, S. Bhat, et al., "Eyeart:Automated, high-throughput, image analysis for diabetic retinopathy screening", Investigative Ophthalmology & Visual Science, Vol.56, No.7, Page 1429, 2015.
    S.E. Ottmani, M.B. Murray, C.Y. Jeon, et al., "Consultation meeting on tuberculosis and diabetes mellitus:Meeting summary and recommendations", The International Journal of Tuberculosis and Lung Disease, Vol.14, No.12, pp.1513-1517, 2010.
    G. Liew, M. Michaelides and C. Bunce, "A comparison of the causes of blindness certifications in england and wales in working age adults (16-64 years), 1999-2000 with 2009-2010", BMJ Open, Vol.4, No.2, DOI:10.1136/bmjopen-2013-004015, 2014.
    J.G. Lee, S. Jun, Y.W. Cho, et al., "Deep learning in meidical imaging:General overview", Korean Journal of Radiology, Vol.18, No.4, pp.570-584, 2017.
    D.Y. Meng and L.N. Sun, "Some new trends of deep learning research", Chinese Journal of Electronics, Vol.28, No.6, pp.1087-1091, 2019.
    A. Shrestha and A. Mahmood, "Review of deep learning algorithms and architectures", IEEE Access, Vol.7, pp.53040-53065, 2019.
    Y.X. Zhao, T. Wu and Y. Han, "Identifying the correctness of fit of internal components based on a convolutional neural network", Acta Electronica Sinica, Vol.46, No.8, pp.1983-1988, 2018. (in Chinese)
    A. Krizhevsky, I. Sutskever and G.E. Hinton, "Imagenet classification with deep convolutional neural networks", Advances in Neural Information Processing Systems, Lake Tahoe, USA, pp.1097-1105, 2012.
    M.D Zeiler and R. Fergus, "Visualizing and understanding convolutional networks", European Conference on Computer Vision, Zurich, Switzerland, pp.818-833, 2014.
    M.D. Zeiler, G.W. Taylor, R. Fergus, et al., "Adaptive deconvolutional networks for mid and high level feature learning", International Conference on Computer Vision, Barcelona, Spain, pp.2018-2025, 2011.
    K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition", arXiv preprint, arXiv:1409.1556, 2014.
    C. Szegedy, W. Liu, Y.Q. Jia, et al., "Going deeper with convolutions", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp.1-9, 2015.
    K.M. He, X.Y. Zhang, S.Q. Ren, et al., "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp.770-778, 2016.
    R. Girshick, J. Donahue, T. Darrell, et al., "Rich feature hierarchies for accurate object detection and semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, pp.580-587, 2014.
    K.M. He, X.Y. Zhang, S.Q. Ren, et al., "Spatial pyramid pooling in deep convolutional networks for visual recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.37, No.9, pp.1904-1916, 2015.
    S. Lazebnik, C. Schmid, J. Ponce, et al., "Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, pp.2169-2178, 2006.
    R. Girshick, "Fast R-CNN", Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, pp.1440-1448, 2015.
    S.Q. Ren, K.M. He, R. Girshick, et al., "Faster R-CNN:Towards real-time object detection with region proposal networks", Advances in Neural Information Processing Systems, Montreal, Canada, pp.91-99, 2015.
    J.F. Dai, Y. Li, K.M. He, et al., "R-fcn:Object detection via region-based fully convolutional networks", Advances in Neural Information Processing Systems, Barcelona, Spain, pp.379-387, 2016.
    T.Y. Lin, P. Dollár, R. Girshick, et al., "Feature pyramid networks for object detection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, pp.2117-2125, 2017.
    K.M. He, G. Gkioxari, P. Dollár, et al., "Mask R-CNN", Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, pp.2961-2969, 2017.
    J. Redmon and A. Farhadi, "Yolov3:An incremental improvement", arXiv preprint, arXiv:1804.02767, 2018.
    W. Liu, D. Anguelov, D. Erhan, et al., "Ssd:Single shot multibox detector", European Conference on Computer Vision, Amsterdam, Holland, pp.21-37, 2016.
    J. Long, E. Shelhamer and T. Darrell, "Fully convolutional networks for semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, pp.3431-3440, 2015.
    L.C. Chen, G. Papandreou, I. Kokkinos, et al., "Semantic image segmentation with deep convolutional nets and fully connected CRFS", arXiv preprint, arXiv:1804.02767, 2018.
    L.C. Chen, G. Papandreou, I. Kokkinos, et al., "Deeplab:Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.40, No.4, pp.834-848, 2017.
    L.C. Chen, G. Papandreou, F. Schroff, et al., "Rethinking atrous convolution for semantic image segmentation", arXiv preprint, arXiv:1412.7062, 2014.
    O. Ronneberger, P. Fischer and T. Brox, "U-net:Convolutional networks for biomedical image segmentation", International Conference on Medical Image Computing and Computer Assisted Intervention, Munich, German, pp.234-241, 2015.
    F. Li, X.G. Gao and K.F. Wan, "Training restricted Boltzman machine using gradient fixing based algorithm", Chinese Journal of Electronics, Vol.27, No.4, pp.694-703, 2018.
    T. Lee and S. Yoon, "Boosted categorical restricted boltzmann machine for computational prediction of splice junctions" International Conference on Machine Learning, Lille, France, pp.2483-2492, 2015.
    E.J. Carmona, M. Rincón, J. García-Feijoó, et al., "Identification of the optic nerve head with genetic algorithms", Artificial Intelligence in Medicine, Vol.43, No.3, pp.243-259, 2008.
    J. Staal, M.D. Abrmoff, M. Niemeijer, et al., "Ridge-based vessel segmentation in color images of the retina", IEEE Transactions on Medical Imaging, Vol.23, No.4, pp.501-509, 2004.
    E. Decenciėre, G. Cazuguel, X.W. Zhang, et al., "Teleophta:Machine learning and image processing methods for teleophthalmology", Irbm, Vol.34, No.2, pp.196-203, 2013.
    M. Niemeijer, B. Van Ginneken, M.J. Cree, et al., "Retinopathy online challenge:Automatic detection of microaneurysms in digital color fundus photographs", IEEE Transactions on Medical Imaging, Vol.29, No.1, pp.185-195, 2009.
    E. Decenciėre, X.W. Zhang, G. Cazuguel, et al., "Feedback on a publicly distributed image database:The messidor database", Image Analysis & Stereology, Vol.33, No.3, pp.231-234, 2014.
    Z. Zhang, F.S. Yin, J. Liu, et al., "Origa-light:An online retinal fundus image database for glaucoma analysis and research", Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, pp.3065-3068, 2010.
    M.M. Fraz, P. Remagnino, A. Hoppe, et al., "An ensemble classification-based approach applied to retinal vessel segmentation", IEEE Transactions on Biomedical Engenieering, Vol.59, No.9, pp.2538-2548, 2012.
    A.D. Hoover, V. Kouznetsova and M. Goldbaum, "Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response", IEEE Transactions on Medical Imaging, Vol.19, No.3, pp.203-210, 2000.
    H. Pratt, F. Coenen, D.M. Broadbent, et al., "Convolutional neural networks for diabetic retinopathy", Procedia Computer Science, Vol.90, pp.200-205, 2016.
    T. Chandrakumar and R. Kathirvel, "Classifying diabetic retinopathy using deep learning architecture", Int J Eng Res Technol, Vol.5, No.6, pp.19-24, 2016.
    V. Gulshan, L. Peng, M. Coram, et al., "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs", Jama, Vol.316, No.22, pp.2402-2410, 2016.
    R. Gargeya and T. Leng, "Automated identification of diabetic retinopathy using deep learning", Ophthalmology, Vol.124, No.7, pp.962-969, 2017.
    Y.W. Chen, T.Y. Wu, W.H. Wong, et al., "Diabetic retinopathy detection based on deep convolutional neural networks", IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, pp.1030-1034, 2018.
    R.F. Mansour, "Deep-learning-based automatic computeraided diagnosis system for diabetic retinopathy", Biomedical Engineering Letters, Vol.8, No.1, pp.41-57, 2018.
    Z.Y. Zhao, K.R. Zhang, X.J. Hao, et al., "Bira-net:Bilinear attention net for diabetic retinopathy grading", arXiv preprint, arXiv:1905.06312, 2019.
    X.L. Zeng, H.Q. Chen, Y. Luo, et al., "Automated detection of diabetic retinopathy using a binocular siameselike convolutional network", IEEE International Symposium on Circuits and Systems, Sapporo, Japan, pp.1-5, 2019.
    S.H. Khan, Z. Abbas, S.M.D. Rizvi, et al., "Classification of diabetic retinopathy images based on customised cnn architecture", Amity International Conference on Artificial Intelligence, Dubai, United Arab Emirates, pp.244-248, 2019.
    M. Haloi, "Improved microaneurysm detection using deep neural networks", arXiv preprint, arXiv:1505.04424, 2015.
    M.J.J.P. Van Grinsven, B. van Ginneken, C.B. Hoyng, et al., "Fast convolutional neural network training using selective data sampling:Application to hemorrhage detection in color fundus images", IEEE Transactions on Medical Imaging, Vol.35, No.5, pp.1273-1284, 2016.
    P. Prentašić and S. Lončarić, "Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion", Computer Methods and Programs in Biomedicine, Vol.137, pp.281-292, 2016.
    J.H. Tan, H. Fujita, S. Sivaprasad, et al., "Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network", Information Sciences, Vol.420, pp.66-76, 2017.
    P. Chudzik, S. Majumdar, F. Caliva, et al., "Exudate segmentation using fully convolutional neural networks and inception modules", Medical Imaging 2018:Image Processing, Houston, USA, DOI:10.1117/12.2293549, 2018.
    J.I. Orlando, E. Prokofyeva, M. del Fresno, et al., "An ensemble deep learning based approach for red lesion detection in fundus images", Computer Methods and Programs in Biomedicine, Vol.153, pp.115-127, 2018.
    C. Playout, R. Duval and F. Cheriet, "A multitask learning architecture for simultaneous segmentation of bright and red lesions in fundus images", International Conference on Medical Image Computing and Computer Assisted Intervention, Granada, Spain, pp.101-108, 2018.
    R. Kasantikul and W. Kusakunniran, "Improving supervised microaneurysm segmentation using autoencoder-regularizedmoff, M. Niemeijer, et al., "Ridge-based vessel segmentation in color images of the retina", IEEE Transactions on Medical Imaging, Vol.23, No.4, pp.501-509, 2004.
    E. Decenciėre, G. Cazuguel, X.W. Zhang, et al., "Teleophta:Machine learning and image processing methods for teleophthalmology", Irbm, Vol.34, No.2, pp.196-203, 2013.
    M. Niemeijer, B. Van Ginneken, M.J. Cree, et al., "Retinopathy online challenge:Automatic detection of microaneurysms in digital color fundus photographs", IEEE Transactions on Medical Imaging, Vol.29, No.1, pp.185-195, 2009.
    E. Decenciėre, X.W. Zhang, G. Cazuguel, et al., "Feedback on a publicly distributed image database:The messidor database", Image Analysis & Stereology, Vol.33, No.3, pp.231-234, 2014.
    Z. Zhang, F.S. Yin, J. Liu, et al., "Origa-light:An online retinal fundus image database for glaucoma analysis and research", Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, pp.3065-3068, 2010.
    M.M. Fraz, P. Remagnino, A. Hoppe, et al., "An ensemble classification-based approach applied to retinal vessel segmentation", IEEE Transactions on Biomedical Engenieering, Vol.59, No.9, pp.2538-2548, 2012.
    A.D. Hoover, V. Kouznetsova and M. Goldbaum, "Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response", IEEE Transactions on Medical Imaging, Vol.19, No.3, pp.203-210, 2000.
    H. Pratt, F. Coenen, D.M. Broadbent, et al., "Convolutional neural networks for diabetic retinopathy", Procedia Computer Science, Vol.90, pp.200-205, 2016.
    T. Chandrakumar and R. Kathirvel, "Classifying diabetic retinopathy using deep learning architecture", Int J Eng Res Technol, Vol.5, No.6, pp.19-24, 2016.
    V. Gulshan, L. Peng, M. Coram, et al., "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs", Jama, Vol.316, No.22, pp.2402-2410, 2016.
    R. Gargeya and T. Leng, "Automated identification of diabetic retinopathy using deep learning", Ophthalmology, Vol.124, No.7, pp.962-969, 2017.
    Y.W. Chen, T.Y. Wu, W.H. Wong, et al., "Diabetic retinopathy detection based on deep convolutional neural networks", IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, pp.1030-1034, 2018.
    R.F. Mansour, "Deep-learning-based automatic computeraided diagnosis system for diabetic retinopathy", Biomedical Engineering Letters, Vol.8, No.1, pp.41-57, 2018.
    Z.Y. Zhao, K.R. Zhang, X.J. Hao, et al., "Bira-net:Bilinear attention net for diabetic retinopathy grading", arXiv preprint, arXiv:1905.06312, 2019.
    X.L. Zeng, H.Q. Chen, Y. Luo, et al., "Automated detection of diabetic retinopathy using a binocular siameselike convolutional network", IEEE International Symposium on Circuits and Systems, Sapporo, Japan, pp.1-5, 2019.
    S.H. Khan, Z. Abbas, S.M.D. Rizvi, et al., "Classification of diabetic retinopathy images based on customised cnn architecture", Amity International Conference on Artificial Intelligence, Dubai, United Arab Emirates, pp.244-248, 2019.
    M. Haloi, "Improved microaneurysm detection using deep neural networks", arXiv preprint, arXiv:1505.04424, 2015.
    M.J.J.P. Van Grinsven, B. van Ginneken, C.B. Hoyng, et al., "Fast convolutional neural network training using selective data sampling:Application to hemorrhage detection in color fundus images", IEEE Transactions on Medical Imaging, Vol.35, No.5, pp.1273-1284, 2016.
    P. Prentašić and S. Lončarić, "Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion", Computer Methods and Programs in Biomedicine, Vol.137, pp.281-292, 2016.
    J.H. Tan, H. Fujita, S. Sivaprasad, et al., "Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network", Information Sciences, Vol.420, pp.66-76, 2017.
    P. Chudzik, S. Majumdar, F. Caliva, et al., "Exudate segmentation using fully convolutional neural networks and inception modules", Medical Imaging 2018:Image Processing, Houston, USA, DOI:10.1117/12.2293549, 2018.
    J.I. Orlando, E. Prokofyeva, M. del Fresno, et al., "An ensemble deep learning based approach for red lesion detection in fundus images", Computer Methods and Programs in Biomedicine, Vol.153, pp.115-127, 2018.
    C. Playout, R. Duval and F. Cheriet, "A multitask learning architecture for simultaneous segmentation of bright and red lesions in fundus images", International Conference on Medical Image Computing and Computer Assisted Intervention, Granada, Spain, pp.101-108, 2018.
    R. Kasantikul and W. Kusakunniran, "Improving supervised microaneurysm segmentation using autoencoder-regularized neural network", Digital Image Computing:Techniques and Applications, Canberra, Australia, pp.1-7, 2018.
    N. Eftekhari, H.R. Pourreza, M. Masoudi, et al., "Microaneurysm detection in fundus images using a twostep convolutional neural network", Biomedical Engineering Online, Vol.18, No.1, Page 67, 2019.
    J. Almotiri, K. Elleithy and A. Elleithy, "Retinal vessels segmentation techniques and algorithms:A survey", Applied Sciences, Vol.8, No.2, Page 155, 2018.
    P. Jiang, Q.S. Dou and X.Y. Hu, "A supervised method for retinal image vessel segmentation by embedded learning and classification", Journal of Intelligent & Fuzzy Systems, Vol.29, No.5, pp.2305-2315, 2015.
    D. Maji, A. Santara, P. Mitra, et al., "Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images", arXiv preprint, arXiv:1603.04833, 2016.
    J. Mo and L. Zhang, "Multi-level deep supervised networks for retinal vessel segmentation", International Journal of Computer Assisted Radiology and Surgery, Vol.12, No.12, pp.2181-2193, 2017.
    Q.G. Jin, Z.P. Meng, T.D. Pham, et al., "Dunet:A deformable network for retinal vessel segmentation", Knowledge-Based Systems, Vol.178, pp.149-162, 2019.
    D. Li, D.A. Dharmawan, B.P. Ng, et al., "Residual U-net for retinal vessel segmentation", IEEE International Conference on Image Processing, Taipei, China, pp.1425-1429, 2019.
    G. Lim, Y. Cheng, W. Hsu, et al., "Integrated optic disc and cup segmentation with deep learning", IEEE International Conference on Tools with Artificial Intelligence, Vietri sul Mare, Italy, pp.162-169, 2015.
    K.K. Maninis, J. Pont-Tuset, P. Arbeláez, et al., "Deep retinal image understanding", International Conference on Medical Image Computing and Computer Assisted Intervention, Athens, Greece, pp.140-148, 2016.
    Z.W. Feng, J. Yang, L.X. Yao, et al., "Deep retinal image segmentation:A fcn-based architecture with short and long skip connections for retinal image segmentation", International Conference on Neural Information Processing, Guangzhou, China, pp.713-722, 2017.
    A. Sevastopolsky, "Optic disc and cup segmentation methods for glaucoma detection with modification of Unet convolutional neural network", Pattern Recognition and Image Analysis, Vol.27, No.3, pp.618-624, 2017.
    H.Z. Fu, J. Cheng, Y.W. Xu, et al., "Joint optic disc and cup segmentation based on multi-label deep network and polar transformation", IEEE Transactions on Medical Imaging, Vol.37, No.7, pp.1597-1605, 2018.
    D.F. Zhang, W.F. Zhu, H.M. Zhao, et al., "Automatic localization and segmentation of optical disk based on faster R-CNN and level set in fundus image", Medical Imaging 2018:Image Processing, Houston, USA, DOI:10.1117/12.2292950, 2018.
    D. Mohan, J.R.H. Kumar and C.S. Seelamantula, "Optic disc segmentation using cascaded multiresolution convolutional neural networks", IEEE International Conference on Image Processing, Taipei, China, pp.834-838, 2019.
    D. Mohan, J.R.H. Kumar and C.S. Seelamantula, "Highperformance optic disc segmentation using convolutional neural networks", IEEE International Conference on Image Processing, Athens, Greece, pp.4038-4042, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1354) PDF downloads(495) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return