Citation:  LI Tiantian, SHI Minjia, LIN Bo, WU Wenting. One and TwoWeight $\mathbb{Z}_{2}R_{2}$ Additive Codes[J]. Chinese Journal of Electronics, 2021, 30(1): 7276. doi: 10.1049/cje.2020.10.011 
[1] 
A. Bonisoli, "Every equidistant linear code is a sequence of dual Hamming codes", Ars Combinatoria, Vol. 18, pp. 181186, 1984. http://www.ams.org/mathscinetgetitem?mr=823843

[2] 
C. Carlet, "Oneweight $ \mathbb{Z}_{4} $linear codes", In: J. Buchmann, T. H{\o}holdt, H. Stichtenoth, et al. (eds), Coding Theory, Cryptography and Related Areas, Springer, Berlin, Heidelberg, pp. 5772, 2000.

[3] 
M.J. Shi and Y. Wang, "Optimal binary codes from oneLee weight and twoLee weight projective codes over $ \mathbb{Z}_4 $", Journal of Systems Science and Complexity, Vol. 27, No. 4, pp. 795810, 2014. doi: 10.1007/s1142401421888

[4] 
M.J. Shi, L.L. Xu and G. Yang, "A note on one weight and two weight projective $ \mathbb{Z}_4 $codes", IEEE Transaction on Information Theory, Vol. 63, No. 1, pp. 177182, 2017. doi: 10.1109/TIT.2016.2628408

[5] 
J.A. Wood, "The structure of linear codes of constant weight", Transactions of the American Mathematical Society, Vol. 354, No. 3, pp. 10071026, 2002.

[6] 
M.J. Shi and Y. Luo, "Construction of oneLee weight and twoLee weight codes over $ \mathbb{F}_{p}+v\mathbb{F}_{p} $", Journal of System Sciences and Complexity, Vol. 30, No. 2, pp. 484493, 2017. doi: 10.1007/s114240165062z

[7] 
M.J. Shi, P. Solé, "Optimal pary codes from oneweight codes and twoweight codes over $ \mathbb{F}_{p}+v\mathbb{F}_{p} $", Journal of System Sciences and Complexity, Vol. 28, No. 3, pp. 679690, 2015. doi: 10.1007/s1142401532653

[8] 
M.J. Shi. "Optimal $ p $ary codes from oneweight linear codes over $ \mathbb{Z}_{p.m} $", Chinese Journal of Electronics, Vol. 22, No. 4, pp. 799802, 2013.

[9] 
M.J. Shi, S.X. Zhu and S. L. Yang, " A class of optimal $ p $ary codes from oneweight codes over $ \mathbb{F}_{p}[u]/\langle u.m\rangle $", Journal of the Franklin Institute, Vol. 350, No. 5, pp. 929937, 2013. doi: 10.1016/j.jfranklin.2012.05.014

[10] 
M. Sari, V. Siap and I. Siap, "Onehomogeneous weight codes over Finite chain rings", Bulletin of the Korean Mathematical Society, Vol. 52, No. 6, pp. 20112023, 2015. doi: 10.4134/BKMS.2015.52.6.2011

[11] 
I. Bouyuliev, V. Fack, W. Willems, et al., "Projective twoweight codes with small parameters and their corresponding graphs", Designs, Codes and Cryptography, Vol. 41, No. 1, pp. 5978, 2006. doi: 10.1007/s1062300600191

[12] 
R. Calderbank and W.M. Kantor, "The Geometry of twoweight codes", Bulletin of the London Mathematical Society, Vol. 18, No. 2, pp. 97122, 1986. doi: 10.1112/blms/18.2.97

[13] 
M.J. Shi and L. Chen, "Construction of twoLee weight codes over $ \mathbb{F}_{p}+v\mathbb{F}_{p}+v.{2}\mathbb{F}_{p} $", Internal Journal of Computer Mathematics, Vol. 93, No. 3, pp. 415424, 2016. doi: 10.1080/00207160.2014.989709

[14] 
P. Delsarte, "An algebraic approach to the association schemes of coding theory", Philips Research Reports. Supplements, Vol. 10, pp. 197, 1973. http://ci.nii.ac.jp/naid/20001314304

[15] 
S.T. Dougherty, H.W. Liu and L. Yu, "One weight $ \mathbb{Z}_{2}\mathbb{Z}_{4} $ additive codes", Applicable Algebra in Engineering, Communication and Computing, Vol. 27, No. 2, pp. 123138, 2016. doi: 10.1007/s0020001502734

[16] 
M.J. Shi, C.C. Wang, R.S. Wu, et al., "Oneweight and twoweight $ \mathbb{Z}_{2}\mathbb{Z}_{2}[u, v] $additive codes", Cryptography and Communications, Vol. 12, pp. 4434545, 2020. doi: 10.1007/s12095019003915

[17] 
M.J. Shi, R.S. Wu, D. Krotov, "On $ \mathbb{Z}_p\mathbb{Z}_{p.k} $ additive codes and their duality", IEEE Transactions on Information theory, Vol. 65, No. 6, pp. 38423847, 2018.

[18] 
M. Ozen, M.J. Shi and V. Siap, "An identity between the $ m $spotty RosenloomTsfasman weight enumerator over finite commutative Frobenius rings", Bulletin of the Korean Mathematical Society, Vol. 52, No. 3, pp. 809823, 2015. doi: 10.4134/BKMS.2015.52.3.809
