Citation: | YAN Ruqiang, SHEN Fei, ZHOU Mengjie. “Induction Motor Fault Diagnosis Based on Transfer Principal Component Analysis”. Chinese Journal of Electronics, vol. 30 no. 1. doi: 10.1049/cje.2020.11.003 |
[1] |
A. Glowacz, W. Glowacz, Z. Glowacz, et al., "Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals", Measurement, Vol. 113, pp. 1–9, 2018. http://www.sciencedirect.com/science/article/pii/S0263224117305432
|
[2] |
W. Sun, R. Zhao, R. Yan, et al., "Convolutional discriminative feature learning for induction motor fault diagnosis", IEEE Trans. Ind. Informatics, Vol. 13, No. 3, pp. 1350–1359, 2017. doi: 10.1109/TII.2017.2672988
|
[3] |
J. Wang, H. Peng, M. Tu, et al., "A fault diagnosis method of power systems based on an improved adaptive fuzzy spiking neural P systems and PSO algorithms", Chinese Journal of Electronics, Vol. 25, No. 2, pp. 320–327, 2016. doi: 10.1049/cje.2016.03.019
|
[4] |
B. Yang, Y. Lei, F. Jia, et al., "An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings", Mech. Syst. Signal Process., Vol. 122, pp. 692–706, 2019. doi: 10.1016/j.ymssp.2018.12.051
|
[5] |
F. Shen, J. Xu, C. Sun, et al., "Transfer between multiple working conditions: A new TCCHC-based exponential semi-deterministic extended Kalman filter for bearing remaining useful life prediction", Measurement, Vol. 142, pp. 148–162, 2019. doi: 10.1016/j.measurement.2019.04.074
|
[6] |
H. Yang, X. Li, Z. Wang, et al., "A novel sensor deployment method based on image processing and wavelet transform to optimize the surface coverage in WSNs", Chinese J. Electron., Vol. 25, No. 3, pp. 495–502, 2016. doi: 10.1049/cje.2016.05.015
|
[7] |
W. Sun, S. Shao, R. Zhao, et al., "A sparse auto-encoder-based deep neural network approach for induction motor faults classification", Measurement, Vol. 89, pp. 171–178, 2016. doi: 10.1016/j.measurement.2016.04.007
|
[8] |
R. Zhao, R. Yan, Z. Chen, et al., "Deep learning and its applications to machine health monitoring", Mechanical Systems and Signal Processing, Vol. 115, pp. 213–237, 2019. doi: 10.1016/j.ymssp.2018.05.050
|
[9] |
T. Ince, S. Kiranyaz, L. Eren, et al., "Real-time motor fault detection by 1-D convolutional neural networks", IEEE Trans. Ind. Electron., Vol. 63, No. 11, pp. 7067–7075, 2016. doi: 10.1109/TIE.2016.2582729
|
[10] |
B. Gou, Y. Xu, Y. Xia, et al., "An intelligent time-adaptive data-driven method for sensor fault diagnosis in induction motor drive system", IEEE Trans. Ind. Electron., Vol. 66, No. 12, pp. 9817–9827, 2019. doi: 10.1109/TIE.2018.2880719
|
[11] |
K. Weiss, T. M. Khoshgoftaar and D. D. Wang, "A survey of transfer learning", J. Big Data, Vol. 3, No. 1, Article No. 9, 2016. doi: 10.1186/s40537-016-0043-6
|
[12] |
M. Wang and W. Deng, "Deep visual domain adaptation: A survey", Neurocomputing, Vol. 312, pp. 135–153, 2018. doi: 10.1016/j.neucom.2018.05.083
|
[13] |
Y. U. Lasheng, W. U. Xu and Y. Yu, "An online education data classification model based on Tr_MAdaBoost algorithm", Chinese J. Electron., Vol. 28, No. 1, pp. 25–32, 2019. http://www.cnki.com.cn/Article/CJFDTotal-EDZX201901004.htm
|
[14] |
J. Xie, L. Zhang, L. Duan, et al., "On cross-domain feature fusion in gearbox fault diagnosis under various operating conditions based on transfer component analysis", 2016 IEEE International Conference on Prognostics and Health Management, pp. 1–6, 2016. http://ieeexplore.ieee.org/document/7542845
|
[15] |
M. Zhang, D. Wang, W. Lu, et al., "A deep transfer model with wasserstein distance guided multi-adversarial networks for bearing fault diagnosis under different working conditions", IEEE Access, Vol. 7, pp. 65303–65318, 2019. doi: 10.1109/ACCESS.2019.2916935
|
[16] |
T. Jollife and J. Cadima, "Principal component analysis: A review and recent developments", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 374, No. 2065. pp. 1–16, 2016. http://pubmedcentralcanada.ca/pmcc/articles/PMC4792409/
|
[17] |
B. Jiang, J. Xiang, Y. Wang, et al., "Rolling bearing fault diagnosis approach using probabilistic principal component analysis denoising and cyclic bispectrum", JVC/Journal Vib. Control, Vol. 22, No. 10, pp. 2420–2433, 2016. doi: 10.1177/1077546314547533
|
[18] |
J. Wang, R. X. Gao, Z. Yuan, et al., "A joint particle filter and expectation maximization approach to machine condition prognosis", J. Intell. Manuf., Vol. 30, No. 2, pp. 605–621, 2019. doi: 10.1007/s10845-016-1268-0
|