Volume 30 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
YU Peng. Quantitative Method Based on Cotangent Similarity Degree in Three-Valued Ł ukasiewicz Logic[J]. Chinese Journal of Electronics, 2021, 30(1): 134-144. doi: 10.1049/cje.2020.11.011
Citation: YU Peng. Quantitative Method Based on Cotangent Similarity Degree in Three-Valued Ł ukasiewicz Logic[J]. Chinese Journal of Electronics, 2021, 30(1): 134-144. doi: 10.1049/cje.2020.11.011

Quantitative Method Based on Cotangent Similarity Degree in Three-Valued Ł ukasiewicz Logic

doi: 10.1049/cje.2020.11.011
Funds:

the National Natural Science Foundation of China 61976130

the National Natural Science Foundation of China 61871260

Scientific Research Program Funded by Shaanxi Provincial Education Department 18JK0099

Natural Science Foundation of Shaanxi Province 2020JQ-698

More Information
  • Corresponding author: YU Peng  (corresponding author)  was born in 1981. He received the Ph.D. degree in mathematics from shaanxi normal University in 2019. He is currently an associate professor of Shaanxi University of Science and Technology. His research interests include non-classic logic, fuzzy reasoning and rough set. (Email: yupeng@sust.edu.cn)
  • Received Date: 2019-01-23
  • Accepted Date: 2020-08-24
  • Publish Date: 2021-01-01
  • The main purpose of this paper is to establish a type of quantitative model by using the contangent similarity function in the three-valued Ł ukasiewicz propositional logic system $\text{Ł}_{3}$. We introduce the concepts of the cotangent similarity degree, cotangent pseudo-distance and cotangent truth degree of the propositions, together with their basic properties in $\text{Ł}_{3}$. We investigate the relationship between the cotangent truth degree and contangent pseudo-distance, and prove the continuity of the logical connectives $\neg, \vee$ and $\rightarrow$ in the $\text{Ł}_{3}$ logical metric space. We propose a graded reduction method and three types of graded reasoning frameworks on the propositions set F(S), and provide several examples and basic properties of it.
  • loading
  • [1]
    Roser J. B and Turquette A. R, Many-valued Logic, Amsterdam: North-Holland, 1952.
    [2]
    Pavelka J, "On fuzzy logic: Ⅰ", Zeitschrift für Mathematische Logik und Grundlagen Mathematik, Vol. 25, No. 2, pp.45-52, 1979.
    [3]
    Adam E W, A Primer of Probability Logic, Stanford: CSLI Publications, pp.11-34, 1998.
    [4]
    Mundici D, "Averaging truth value in Łukasizewicz logic", Studia Logica, Vol. 55, No. 1, pp.113-127, 1995. doi: 10.1007/BF01053035
    [5]
    Flaminio T and Godol, "A logic for reasoning about the probability of fuzzy events", Fuzzy Sets and Systems, Vol. 158, No. 6, pp.625-638, 2007. doi: 10.1016/j.fss.2006.11.008
    [6]
    X. Li and B.D. Liu, "Foundation of credibilistic logic", Fuzzy Optimization and Decision Making, Vol. 8, No. 1, pp.91-102, 2009. doi: 10.1007/s10700-009-9053-6
    [7]
    Faginr, Halpernjy and Megiddon, "A logic for reasoning about probabilities", Information and Computation, Vol. 87, No. 12, pp.78-128, 1990. doi: 10.1109/LICS.1988.5138
    [8]
    G.J. Wang and H.J. Zhou, "Quantitative logic", Information Science, Vol. 179, No. 3, pp.226-247, 2009. doi: 10.1016/j.ins.2008.09.008
    [9]
    G.J. Wang and L. Fu and J.S. Song, "Theory of truth degrees of propositions in two-valued logic", Science in China(Series A), Vol. 45, No. 9, pp.1106-1116, 2002. doi: 10.1360/02ys9122
    [10]
    H.J. Zhou and G.J. Wang, "Borel probabilistic and quantitative logic", Science China: Information Sciences, Vol. 54, No. 9, pp.1843-1854, 2011. doi: 10.1007/s11432-011-4268-x
    [11]
    L. Cheng, H. W Liu and G.J. Wang, "Correction and improvement on several results in quantitative logic", Information Sciences, Vol. 278, pp.555-558, 2014. doi: 10.1016/j.ins.2014.03.073
    [12]
    G.J. Wang, "A unified integrated method for evaluating goodness of propositions in several propositional logic systems and its applications", Chinese Journal of Electronics, Vol. 21, No. 2, pp.195-201, 2012. http://cje.ejournal.org.cn/en/article/id/3516
    [13]
    H.B. Wu, "The generalized truth degree of quantitative logic in the logic system $L. {*}_{n}$(n-valued NM-logic system)", Computers & Mathematics with Applications, Vol. 59, No. 8, pp.2587-2596. http://www.ams.org/mathscinet-getitem?mr=2607962
    [14]
    Y.H. She, G.J. Wang and X.L. He, "Topological characterization of consistency of logic theories in n-valued Ł ukasizewicz logic Ł uk(n)", Chinese Journal of Eletronics, Vol. 19, No. 3, pp.427-430, 2009. http://www.zhangqiaokeyan.com/academic-journal-cn_electronic-journal-english_thesis/0201268501098.html
    [15]
    G.J. Wang, "Theory of logic metric spaces", Acta Mathematica Sinica, Chinese Series, Vol. 44, No. 1, pp.159-168, 2001.
    [16]
    G.J. Wang and Y.H. She, "A topological characterization of consistency of logic theories in propositional logic", Mathematical Logic Quarterly, Vol. 52, pp.470-477, 2006. doi: 10.1002/malq.200610007
    [17]
    Y.H. She and X.L. He, "A quantitative approach to reasoning about incomplete knowledge", Information Sciences, Vol. 451, pp.100-111, 2018. http://smartsearch.nstl.gov.cn/paper_detail.html?id=e703a536c793af12df4cc1321a9f4e88
    [18]
    J. Li and F. G Deng, "Unified theory of truth degrees in n-valueds MTL propositionan logic", Acta Electronica Sinica, Vol. 39, No. 8, pp.1864-1868, 2011.
    [19]
    J. Li and J.T. Yao, "Theory of integral truth degrees if formulas in SMTL propositongal logic", Acta Electronica Sinica, Vol. 41, No. 5, pp.878-883, 2013. http://www.researchgate.net/publication/287163397_Theory_of_integral_truth_degrees_of_formula_in_SMTL_propositional_logic
    [20]
    W.B. Zuo, "Probability truth degrees of formulas in MTL-algebras semantics", Acta Electronica Sinica, Vol. 43, No. 2, pp.293-298, 2015. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXU201502014.htm
    [21]
    S.L. Cheng, J.G. Li and X.G. Wang, Fuzzy Set Theory and Its Application, Beijing: Science Press, 2005.
    [22]
    X.H. Zhang and Y. Zheng, "Linguistic quantifiers modeled by interval-valued intuitionistic Sugeno integrals", Journal of Intelligent & Fuzzy Systems, Vol. 29, No. 2, pp.583-592, 2015. http://www.researchgate.net/publication/282900004_Linguistic_quantifiers_modeled_by_interval-valued_intuitionistic_Sugeno_integrals1
    [23]
    J. Ye, "Single-valued neutrosophic similarity measures based on cotangent function and their application in the fault diagnosis of steam turbine", Soft Computing, Vol. 21, pp.817-825, 2017. doi: 10.1007/s00500-015-1818-y
    [24]
    P. Yu and B. Zhao, "The Hamming distance representation and decomposition theorem of formula's TruthDegree", Journal of Software, Vol. 29, No. 10, pp.3091-3110, 2018. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-software_thesis/0201271020749.html
    [25]
    B. Zhao and P. Yu, "A kind of quantitative method Based on camberra fuzzy distance in multiple-valued logic", Acta Electronica Sinica, Vol. 46, No. 10, pp.2305-2315, 2018. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXU201810001.htm
    [26]
    M.K. Chakraborty, Use of Fuzzy Set Theory in Introducducing Grade Consequence in Multiple-valued Logic, in Fuzzy Logic in Knowledge-based systems, Decision and Aontrol, North-Holled, pp.247-257, 1998. http://www.researchgate.net/publication/265347970_Use_of_fuzzy_set_theory_in_introducing_graded_consequence_in_multiple_valued_logic
    [27]
    M.K. Chakraborty and Sanjukta Basu, "Graded consequence and Some Metalogical Notions Generalized", Fundamenta Informaticae, Vol. 32, pp.299-311, 1997. doi: 10.3233/FI-1997-323405
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (299) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return